1 |
# $Id$ |
2 |
|
3 |
import sys |
4 |
import os |
5 |
import unittest |
6 |
|
7 |
from esys.escript import * |
8 |
from esys.linearPDEs import * |
9 |
from esys import finley |
10 |
|
11 |
print "\nSimpleSolve.py" |
12 |
print "--------------" |
13 |
|
14 |
alpha=0.025 |
15 |
|
16 |
# generate mesh |
17 |
|
18 |
# print "\nGenerate mesh: finley.Rectangle(9,12,1)=>" |
19 |
# mydomain=finley.Rectangle(140,140) |
20 |
|
21 |
# print "\nGenerate mesh: finley.Rectangle(4,4,1)=>" |
22 |
# mydomain=finley.Rectangle(4,4,1) |
23 |
|
24 |
print "\nGenerate mesh: finley.Rectangle(151,151,1)=>" |
25 |
mydomain=finley.Rectangle(151,151,1) |
26 |
# mydomain=finley.Rectangle(128,128,1) |
27 |
|
28 |
print "\nSetup domain and functions" |
29 |
print "--------------------------" |
30 |
|
31 |
print "e=Function(mydomain):" |
32 |
e=Function(mydomain) |
33 |
|
34 |
print "n=ContinuousFunction(mydomain):" |
35 |
n=ContinuousFunction(mydomain) |
36 |
|
37 |
# get handles to nodes and elements 1 |
38 |
|
39 |
print "\nGet handles to nodes and elements(1)=>" |
40 |
print "--------------------------------------" |
41 |
|
42 |
print "u_ex=Scalar(1,n,True):" |
43 |
u_ex=Scalar(1,n,True) |
44 |
|
45 |
print "x=e.getX():" |
46 |
x=e.getX() |
47 |
|
48 |
print "norm_u_ex=u_ex.Lsup():" |
49 |
norm_u_ex=u_ex.Lsup() |
50 |
|
51 |
print "\nGenerate a test solution (1)" |
52 |
print "----------------------------" |
53 |
|
54 |
print "mypde=LinearPDE( A=[[1.,0.8],[0.4,1.]], D=alpha, Y=alpha, domain=mydomain)" |
55 |
mypde=LinearPDE(mydomain) |
56 |
mypde.setDebugOn() |
57 |
mypde.setValue(A=[[1.,0.8],[0.4,1.]],D=alpha,Y=alpha) |
58 |
|
59 |
print "mypde.checkSymmetry()" |
60 |
print mypde.checkSymmetry() |
61 |
|
62 |
print "\nIterative Solver (1)=>" |
63 |
u_i=mypde.getSolution(preconditioner=ILU0,iter_max=3000) |
64 |
# u_i=mypde.getSolution(iter_max=3000) |
65 |
|
66 |
|
67 |
print "\nDirect Solver (1)=>" |
68 |
mypde.setSolverMethod(DIRECT) |
69 |
u_d=mypde.getSolution() |
70 |
|
71 |
|
72 |
print "\n***************************************************************" |
73 |
error=u_ex-u_d |
74 |
print "norm of the error for direct solver is : ",error.Lsup()/norm_u_ex |
75 |
error=u_ex-u_i |
76 |
print "norm of the error for iterative solver is: ",error.Lsup()/norm_u_ex |
77 |
print "***************************************************************" |
78 |
|
79 |
# get handles to nodes and elements 2 |
80 |
|
81 |
print "\nGet handles to nodes and elements(2)=>" |
82 |
print "--------------------------------------" |
83 |
|
84 |
print "x=n.getX():" |
85 |
x=n.getX() |
86 |
|
87 |
print "msk=x[0].whereZero()+(x[0]-1.).whereZero()" |
88 |
msk=x[0].whereZero()+(x[0]-1.).whereZero() |
89 |
|
90 |
print "mypde=LinearPDE(A=[[1.,0.],[0.,1.]],q=msk,r=u_ex)" |
91 |
mypde=LinearPDE(mydomain) |
92 |
mypde.setDebugOn() |
93 |
mypde.setValue(A=[[1.,0.],[0.,1.]],q=msk,r=u_ex) |
94 |
|
95 |
print "mypde.checkSymmetry()" |
96 |
print mypde.checkSymmetry() |
97 |
|
98 |
# generate a test solution 2 |
99 |
|
100 |
print "\nGenerate a test solution (2)" |
101 |
print "----------------------------" |
102 |
|
103 |
print "\nDirect Solver (2)=>" |
104 |
|
105 |
|
106 |
# mypde.setSymmetryOn() : is not woking yet! |
107 |
mypde.setSolverMethod(mypde.DIRECT) |
108 |
u_d=mypde.getSolution() |
109 |
|
110 |
print "\nIterative Solver (2)=>" |
111 |
|
112 |
mypde.setSymmetryOn() |
113 |
mypde.setSolverMethod(DEFAULT_METHOD) |
114 |
u_i=mypde.getSolution(iter_max=3000) |
115 |
|
116 |
print "\n******************************************************************" |
117 |
error=u_ex-u_d |
118 |
print "norm of the error for direct solver is : ",error.Lsup()/norm_u_ex |
119 |
error=u_ex-u_i |
120 |
print "norm of the error for iterative solver is: ",error.Lsup()/norm_u_ex |
121 |
print "******************************************************************" |
122 |
|
123 |
print "\n-----" |
124 |
print "Done." |
125 |
print "-----" |