1 |
# $Id$ |
2 |
|
3 |
import sys |
4 |
import os |
5 |
import unittest |
6 |
|
7 |
from esys.escript import * |
8 |
from esys.linearPDEs import * |
9 |
from esys import finley |
10 |
|
11 |
print "\nSimpleSolve.py" |
12 |
print "--------------" |
13 |
|
14 |
alpha=0.01 |
15 |
|
16 |
# generate mesh |
17 |
|
18 |
# print "\nGenerate mesh: finley.Rectangle(9,12,1)=>" |
19 |
# mydomain=finley.Rectangle(1,1) |
20 |
|
21 |
# print "\nGenerate mesh: finley.Rectangle(4,4,1)=>" |
22 |
# mydomain=finley.Rectangle(4,4,1) |
23 |
|
24 |
print "\nGenerate mesh: finley.Rectangle(151,151,1)=>" |
25 |
mydomain=finley.Rectangle(151,151,1) |
26 |
|
27 |
print "\nSetup domain and functions" |
28 |
print "--------------------------" |
29 |
|
30 |
print "e=Function(mydomain):" |
31 |
e=Function(mydomain) |
32 |
|
33 |
print "n=ContinuousFunction(mydomain):" |
34 |
n=ContinuousFunction(mydomain) |
35 |
|
36 |
# get handles to nodes and elements 1 |
37 |
|
38 |
print "\nGet handles to nodes and elements(1)=>" |
39 |
print "--------------------------------------" |
40 |
|
41 |
print "u_ex=Scalar(1,n,True):" |
42 |
u_ex=Scalar(1,n,True) |
43 |
|
44 |
print "x=e.getX():" |
45 |
x=e.getX() |
46 |
|
47 |
print "norm_u_ex=u_ex.Lsup():" |
48 |
norm_u_ex=u_ex.Lsup() |
49 |
|
50 |
print "mypde=LinearPDE( A=[[1.,0.8],[0.4,1.]], D=alpha, Y=alpha, domain=mydomain)" |
51 |
mypde=LinearPDE(A=[[1.,0.8],[0.4,1.]],D=alpha,Y=alpha,domain=mydomain) |
52 |
mypde.setDebugOn() |
53 |
#mypde=LinearPDE(A=[[1.,0.],[0.,1.]],D=alpha,Y=alpha,domain=mydomain) |
54 |
mypde.getOperator().saveMM("t.msh") |
55 |
|
56 |
# generate a test solution 1 |
57 |
|
58 |
print "\nGenerate a test solution (1)" |
59 |
print "----------------------------" |
60 |
|
61 |
print "\nIterative Solver (1)=>" |
62 |
|
63 |
u_i=mypde.getSolution() |
64 |
|
65 |
print "\nDirect Solver (1)=>" |
66 |
|
67 |
mypde.setSolverMethod(DIRECT) |
68 |
u_d=mypde.getSolution() |
69 |
|
70 |
|
71 |
print "\n***************************************************************" |
72 |
error=u_ex-u_d |
73 |
print "norm of the error for direct solver is : ",error.Lsup()/norm_u_ex |
74 |
error=u_ex-u_i |
75 |
print "norm of the error for iterative solver is: ",error.Lsup()/norm_u_ex |
76 |
print "***************************************************************" |
77 |
|
78 |
# get handles to nodes and elements 2 |
79 |
|
80 |
print "\nGet handles to nodes and elements(2)=>" |
81 |
print "--------------------------------------" |
82 |
|
83 |
print "x=n.getX():" |
84 |
x=n.getX() |
85 |
|
86 |
print "msk=x[0].whereZero()+(x[0]-1.).whereZero()" |
87 |
msk=x[0].whereZero()+(x[0]-1.).whereZero() |
88 |
|
89 |
print "mypde=LinearPDE(A=[[1.,0.],[0.,1.]],q=msk,r=u_ex)" |
90 |
mypde=LinearPDE(A=[[1.,0.],[0.,1.]],q=msk,r=u_ex) |
91 |
mypde.setDebugOn() |
92 |
|
93 |
# generate a test solution 2 |
94 |
|
95 |
print "\nGenerate a test solution (2)" |
96 |
print "----------------------------" |
97 |
|
98 |
print "\nDirect Solver (2)=>" |
99 |
|
100 |
# mypde.setSymmetryOn() : is not woking yet! |
101 |
mypde.setSolverMethod(DIRECT) |
102 |
u_d=mypde.getSolution() |
103 |
|
104 |
print "\nIterative Solver (2)=>" |
105 |
|
106 |
#mypde.setSymmetryOn() |
107 |
mypde.setSolverMethod(DEFAULT_METHOD) |
108 |
u_i=mypde.getSolution() |
109 |
|
110 |
print "\n******************************************************************" |
111 |
error=u_ex-u_d |
112 |
print "norm of the error for direct solver is : ",error.Lsup()/norm_u_ex |
113 |
error=u_ex-u_i |
114 |
print "norm of the error for iterative solver is: ",error.Lsup()/norm_u_ex |
115 |
print "******************************************************************" |
116 |
|
117 |
print "\n-----" |
118 |
print "Done." |
119 |
print "-----" |