1 |
# $Id$ |
2 |
|
3 |
from escript.escript import * |
4 |
from escript.modelframe import Model,IterationDivergenceError |
5 |
from escript.linearPDEs import AdvectivePDE,LinearPDE |
6 |
import numarray |
7 |
|
8 |
|
9 |
class TemperatureAdvection(Model): |
10 |
""" |
11 |
|
12 |
The conservation of internal heat energy is given by |
13 |
|
14 |
\f[ |
15 |
\rho c_p ( T_{,t}+v_{j}T_{,j} )-(\kappa T_{,i})_{,i}=Q, |
16 |
\f] |
17 |
\f[ |
18 |
n_i\kappa T_{,i}=0 |
19 |
\f] |
20 |
|
21 |
it is assummed that \f[ \rho c_p \f] is constant in time. |
22 |
|
23 |
solved by Taylor Galerkin method |
24 |
|
25 |
""" |
26 |
def __init__(self,debug=False): |
27 |
Model.__init__(self,debug=debug) |
28 |
self.declareParameter(domain=None, \ |
29 |
temperature=1., \ |
30 |
velocity=numarray.zeros([3]), |
31 |
density=1., \ |
32 |
heat_capacity=1., \ |
33 |
thermal_permabilty=1., \ |
34 |
# reference_temperature=0., \ |
35 |
# radiation_coefficient=0., \ |
36 |
thermal_source=0., \ |
37 |
fixed_temperature=0., |
38 |
location_fixed_temperature=Data(), |
39 |
safety_factor=0.1) |
40 |
|
41 |
def doInitialization(self): |
42 |
self.__pde=LinearPDE(self.domain) |
43 |
self.__pde.setSymmetryOn() |
44 |
# self.__pde.setReducedOrderOn() |
45 |
# self.__pde.setLumpingOn() |
46 |
self.__pde.setValue(D=self.heat_capacity*self.density) |
47 |
|
48 |
def getSafeTimeStepSize(self,dt): |
49 |
"""returns new step size""" |
50 |
h=self.domain.getSize() |
51 |
return self.safety_factor*inf(h**2/(h*abs(self.heat_capacity*self.density)*length(self.velocity)+self.thermal_permabilty)) |
52 |
|
53 |
def G(self,T,alpha): |
54 |
"""tangential operator for taylor galerikin""" |
55 |
g=grad(T) |
56 |
self.__pde.setValue(X=-self.thermal_permabilty*g, \ |
57 |
Y=self.thermal_source-self.__rhocp*inner(self.velocity,g), \ |
58 |
r=(self.__fixed_T-self.temperature)*alpha,\ |
59 |
q=self.location_fixed_temperature) |
60 |
return self.__pde.getSolution() |
61 |
|
62 |
|
63 |
def doStepPostprocessing(self,dt): |
64 |
"""perform taylor galerkin step""" |
65 |
T=self.temperature |
66 |
self.__rhocp=self.heat_capacity*self.density |
67 |
self.__fixed_T=self.fixed_temperature |
68 |
self.temperature=dt*self.G(dt/2*self.G(T,1./dt)+T,1./dt)+T |
69 |
self.trace("Temperature range is %e %e"%(inf(self.temperature),sup(self.temperature))) |