1 |
# $Id:$ |
2 |
|
3 |
# |
4 |
# COPYRIGHT ACcESS 2004 - All Rights Reserved |
5 |
# |
6 |
# This software is the property of ACcESS. No part of this code |
7 |
# may be copied in any form or by any means without the expressed written |
8 |
# consent of ACcESS. Copying, use or modification of this software |
9 |
# by any unauthorised person is illegal unless that |
10 |
# person has a software license agreement with ACcESS. |
11 |
# |
12 |
|
13 |
""" |
14 |
some benchmarks for tetsing the finley solver. The idea is to develop a set of standart benchmarks |
15 |
|
16 |
* Laplace2Dorder1_?k |
17 |
* Laplace3Dorder2_?k |
18 |
|
19 |
where ? is approximatively the number of unknowns in 1000. |
20 |
|
21 |
@var __author__: name of author |
22 |
@var __licence__: licence agreement |
23 |
var __url__: url entry point on documentation |
24 |
@var __version__: version |
25 |
@var __date__: date of the version |
26 |
""" |
27 |
|
28 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
29 |
__licence__="contact: esys@access.uq.edu.au" |
30 |
__url__="http://www.iservo.edu.au/esys/escript" |
31 |
__version__="$Revision:$" |
32 |
__date__="$Date:$" |
33 |
|
34 |
from esys.escript import Lsup,whereZero,kronecker |
35 |
from esys.escript.benchmark import BenchmarkProblem, Options, BenchmarkFilter |
36 |
import esys.finley |
37 |
from esys.escript.linearPDEs import LinearPDE |
38 |
import os |
39 |
|
40 |
class FinleyFilter(BenchmarkFilter): |
41 |
""" |
42 |
defines a filter for L{FinleyProblem} characteristics |
43 |
""" |
44 |
TIME="t [sec]" |
45 |
ERROR="rel. error" |
46 |
|
47 |
|
48 |
def __init__(self,args=None): |
49 |
""" |
50 |
sets up the filter |
51 |
|
52 |
@param args: list of value names to be filtered |
53 |
@type args: C{list} of L{TIME}, L{ERROR} |
54 |
""" |
55 |
if args==None: args=[FinleyFilter.TIME,FinleyFilter.ERROR] |
56 |
super(FinleyFilter,self).__init__() |
57 |
self.__args=args |
58 |
|
59 |
def getResultNames(self): |
60 |
""" |
61 |
return the names of the results produced when run() is called. |
62 |
|
63 |
@return: names the list of the names to be used when the results of the run() call are printed |
64 |
@rtype: C{list} of C{str} |
65 |
""" |
66 |
return self.__args |
67 |
|
68 |
def __call__(self,result): |
69 |
""" |
70 |
filters out the characteristic values |
71 |
|
72 |
@param result: characteristics rturned by a L{FinleyProblem} run |
73 |
@type result: C{dict} |
74 |
@return: filtered values |
75 |
@rtype: C{list} of C{str} |
76 |
""" |
77 |
out=[] |
78 |
for a in self.__args: |
79 |
out.append(result[a]) |
80 |
return out |
81 |
|
82 |
class FinleyOptions(Options): |
83 |
""" |
84 |
finley solver options to be handed over to paso |
85 |
|
86 |
""" |
87 |
def __init__(self,solver_method=None, |
88 |
preconditioner=None, |
89 |
package=None, |
90 |
tolerance=None, |
91 |
verbose=False): |
92 |
self.strmap={ |
93 |
LinearPDE.DIRECT : "DIRECT", |
94 |
LinearPDE.PCG: "PCG", |
95 |
LinearPDE.CR: "CR", |
96 |
LinearPDE.CGS: "CGS", |
97 |
LinearPDE.BICGSTAB: "BICGSTAB", |
98 |
LinearPDE.SSOR: "SSOR", |
99 |
LinearPDE.ILU0: "ILU0", |
100 |
LinearPDE.ILUT: "ILUT", |
101 |
LinearPDE.JACOBI: "JACOBI", |
102 |
LinearPDE.GMRES: "GMRES", |
103 |
LinearPDE.PRES20: "PRES20", |
104 |
LinearPDE.LUMPING: "LUMPIMG", |
105 |
LinearPDE.NO_REORDERING: "NO_REORDERING", |
106 |
LinearPDE.MINIMUM_FILL_IN: "MINIMUM_FILL_IN", |
107 |
LinearPDE.NESTED_DISSECTION: "NESTED_DISSECTION", |
108 |
LinearPDE.SCSL: "SCSL", |
109 |
LinearPDE.MKL: "MKL", |
110 |
LinearPDE.UMFPACK: "UMFPACK", |
111 |
LinearPDE.PASO: "PASO" |
112 |
} |
113 |
name="" |
114 |
if solver_method==None: |
115 |
solver_method==LinearPDE.PRES20 |
116 |
else: |
117 |
name+=self.strmap[solver_method] |
118 |
if preconditioner==None: |
119 |
preconditioner==LinearPDE.JACOBI |
120 |
else: |
121 |
if not name=="": name+="+" |
122 |
name+=self.strmap[preconditioner] |
123 |
if package==None: |
124 |
package==LinearPDE.PASO |
125 |
else: |
126 |
if not name=="": name+=" with " |
127 |
name+=self.strmap[package] |
128 |
if tolerance==None: |
129 |
tolerance=1.e-8 |
130 |
else: |
131 |
if not name=="": name+=", " |
132 |
name+="tol = %s"%tolerance |
133 |
self.solver_method=solver_method |
134 |
self.preconditioner=preconditioner |
135 |
self.tolerance=tolerance |
136 |
self.package=package |
137 |
self.verbose=verbose |
138 |
super(FinleyOptions,self).__init__(name=name) |
139 |
|
140 |
|
141 |
|
142 |
class FinleyProblem(BenchmarkProblem): |
143 |
""" |
144 |
The general benchmark problem for Finley |
145 |
""" |
146 |
def run(self,options): |
147 |
""" |
148 |
creates a domain and a PDE on this domain, solves it (with the given options) and returns the |
149 |
elapsed time and the error. |
150 |
|
151 |
@param options: paso solver options |
152 |
@type options: L{PasoOptions} |
153 |
@return: elapsed time and the error of calculated solution |
154 |
@rtype: pair of C{float} |
155 |
""" |
156 |
domain=self.getDomain() |
157 |
pde,u=self.getTestProblem(domain) |
158 |
pde.setTolerance(options.tolerance) |
159 |
pde.setSolverMethod(options.solver_method,options.preconditioner) |
160 |
pde.setSolverPackage(options.package) |
161 |
a=os.times()[4] |
162 |
uh=pde.getSolution(verbose=options.verbose) |
163 |
a=os.times()[4]-a |
164 |
if u==None: |
165 |
return {FinleyFilter.TIME : a , FinleyFilter.ERROR : None } |
166 |
else: |
167 |
error=Lsup(u-uh)/Lsup(u) |
168 |
return {FinleyFilter.TIME : a , FinleyFilter.ERROR : error } |
169 |
|
170 |
def getTestProblem(self,domain): |
171 |
""" |
172 |
returns a PDEto be solved and an exact solution |
173 |
|
174 |
@param domain: the PDE domain |
175 |
@type domain: L{escript.Domain} |
176 |
@return: a linear PDE to be solved an a reference solution |
177 |
@rtype: L{LinearPDE},L{escript.Data} |
178 |
@remark: must be overwritten by a particular problem |
179 |
""" |
180 |
raise NotImplementedError |
181 |
|
182 |
def getDomain(self): |
183 |
""" |
184 |
returns the domain of the problem |
185 |
|
186 |
@return: a domain |
187 |
@rtype: L{escript.Domain} |
188 |
@remark: must be overwritten by a particular problem |
189 |
""" |
190 |
raise NotImplementedError |
191 |
|
192 |
class RegularFinleyProblem(FinleyProblem): |
193 |
""" |
194 |
base class for finley problem on a rectangular mesh |
195 |
""" |
196 |
def __init__(self,n=1,order=1,dim=2): |
197 |
""" |
198 |
sets up a recangular mesh in finley on a unit cube/square |
199 |
|
200 |
@param n: number of elements in each spactial direction |
201 |
@type n: C{int} |
202 |
@param order: element order |
203 |
@type order: 1 or 2 |
204 |
@param dim: spatial dimension |
205 |
@type n: 2 or 3 |
206 |
""" |
207 |
super(RegularFinleyProblem,self).__init__(name=str((order*n+1)**dim)) |
208 |
self.__n=n |
209 |
self.__order=order |
210 |
self.__dim=dim |
211 |
|
212 |
def getDomain(self): |
213 |
""" |
214 |
returns the unit square/cube with a rectangular mesh |
215 |
|
216 |
@return: a domain |
217 |
@rtype: L{escript.Domain} |
218 |
""" |
219 |
if self.__dim==2: |
220 |
domain=esys.finley.Rectangle(n0=self.__n,n1=self.__n,order=self.__order) |
221 |
else: |
222 |
domain=esys.finley.Brick(n0=self.__n,n1=self.__n,n2=self.__n,order=self.__order) |
223 |
return domain |
224 |
|
225 |
class LaplaceProblem(RegularFinleyProblem): |
226 |
""" |
227 |
base class for the Lapalce eqaution on a rectangular mesh |
228 |
""" |
229 |
def getTestProblem(self,domain): |
230 |
""" |
231 |
returns a PDE and a test solution on the given domain |
232 |
|
233 |
@param doamin: a domain |
234 |
@type domain: L{escript.Domain} |
235 |
@return: the Laplace equation and a test solution |
236 |
@rtype: C{tuple} of C{LinearPDE} and C{escript.Data} |
237 |
""" |
238 |
x=domain.getX() |
239 |
msk=whereZero(x[0])+whereZero(x[0]-1.) |
240 |
u=x[0] |
241 |
for i in range(1,domain.getDim()): |
242 |
msk+=whereZero(x[i])+whereZero(x[i]-1.) |
243 |
u*=(x[i]-i) |
244 |
pde=LinearPDE(domain) |
245 |
pde.setSymmetryOn() |
246 |
pde.setValue(A=kronecker(domain),q=msk,r=u) |
247 |
return pde,u |
248 |
|
249 |
class Laplace2DOrder1_30k(LaplaceProblem): |
250 |
def __init__(self): |
251 |
super(Laplace2DOrder1_30k,self).__init__(n=176,order=1,dim=2) |
252 |
class Laplace2DOrder2_30k(LaplaceProblem): |
253 |
def __init__(self): |
254 |
super(Laplace2DOrder2_30k,self).__init__(n=88,order=2,dim=2) |
255 |
class Laplace2DOrder1_60k(LaplaceProblem): |
256 |
def __init__(self): |
257 |
super(Laplace2DOrder1_60k,self).__init__(n=248,order=1,dim=2) |
258 |
class Laplace2DOrder2_60k(LaplaceProblem): |
259 |
def __init__(self): |
260 |
super(Laplace2DOrder2_60k,self).__init__(n=124,order=2,dim=2) |
261 |
class Laplace2DOrder1_120k(LaplaceProblem): |
262 |
def __init__(self): |
263 |
super(Laplace2DOrder1_120k,self).__init__(n=349,order=1,dim=2) |
264 |
class Laplace2DOrder2_120k(LaplaceProblem): |
265 |
def __init__(self): |
266 |
super(Laplace2DOrder2_120k,self).__init__(n=175,order=2,dim=2) |
267 |
class Laplace2DOrder1_240k(LaplaceProblem): |
268 |
def __init__(self): |
269 |
super(Laplace2DOrder1_240k,self).__init__(n=492,order=1,dim=2) |
270 |
class Laplace2DOrder2_240k(LaplaceProblem): |
271 |
def __init__(self): |
272 |
super(Laplace2DOrder2_240k,self).__init__(n=246,order=2,dim=2) |
273 |
class Laplace2DOrder1_480k(LaplaceProblem): |
274 |
def __init__(self): |
275 |
super(Laplace2DOrder1_480k,self).__init__(n=694,order=1,dim=2) |
276 |
class Laplace2DOrder2_480k(LaplaceProblem): |
277 |
def __init__(self): |
278 |
super(Laplace2DOrder2_480k,self).__init__(n=347,order=2,dim=2) |
279 |
class Laplace2DOrder1_960k(LaplaceProblem): |
280 |
def __init__(self): |
281 |
super(Laplace2DOrder1_960k,self).__init__(n=978,order=1,dim=2) |
282 |
class Laplace2DOrder2_960k(LaplaceProblem): |
283 |
def __init__(self): |
284 |
super(Laplace2DOrder2_960k,self).__init__(n=489,order=2,dim=2) |