1 |
# $Id:$ |
2 |
|
3 |
# |
4 |
# COPYRIGHT ACcESS 2004 - All Rights Reserved |
5 |
# |
6 |
# This software is the property of ACcESS. No part of this code |
7 |
# may be copied in any form or by any means without the expressed written |
8 |
# consent of ACcESS. Copying, use or modification of this software |
9 |
# by any unauthorised person is illegal unless that |
10 |
# person has a software license agreement with ACcESS. |
11 |
# |
12 |
|
13 |
""" |
14 |
some benchmarks for tetsing the finley solver. The idea is to develop a set of standart benchmarks |
15 |
|
16 |
* Laplace2Dorder1_?k |
17 |
* Laplace2Dorder2_?k |
18 |
* Laplace3Dorder1_?k |
19 |
* Laplace3Dorder2_?k |
20 |
|
21 |
where ? is approximatively the number of unknowns in 1000. |
22 |
|
23 |
@var __author__: name of author |
24 |
@var __licence__: licence agreement |
25 |
var __url__: url entry point on documentation |
26 |
@var __version__: version |
27 |
@var __date__: date of the version |
28 |
""" |
29 |
|
30 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
31 |
__licence__="contact: esys@access.uq.edu.au" |
32 |
__url__="http://www.iservo.edu.au/esys/escript" |
33 |
__version__="$Revision:$" |
34 |
__date__="$Date:$" |
35 |
|
36 |
from esys.escript import Lsup,whereZero,kronecker |
37 |
from esys.escript.benchmark import BenchmarkProblem, Options, BenchmarkFilter |
38 |
import esys.finley |
39 |
from esys.escript.linearPDEs import LinearPDE |
40 |
import os |
41 |
|
42 |
class FinleyFilter(BenchmarkFilter): |
43 |
""" |
44 |
defines a filter for L{FinleyProblem} characteristics |
45 |
""" |
46 |
TIME="t [sec]" |
47 |
ERROR="rel. error" |
48 |
|
49 |
|
50 |
def __init__(self,args=None): |
51 |
""" |
52 |
sets up the filter |
53 |
|
54 |
@param args: list of value names to be filtered |
55 |
@type args: C{list} of L{TIME}, L{ERROR} |
56 |
""" |
57 |
if args==None: args=[FinleyFilter.TIME,FinleyFilter.ERROR] |
58 |
super(FinleyFilter,self).__init__() |
59 |
self.__args=args |
60 |
|
61 |
def getResultNames(self): |
62 |
""" |
63 |
return the names of the results produced when run() is called. |
64 |
|
65 |
@return: names the list of the names to be used when the results of the run() call are printed |
66 |
@rtype: C{list} of C{str} |
67 |
""" |
68 |
return self.__args |
69 |
|
70 |
def __call__(self,result): |
71 |
""" |
72 |
filters out the characteristic values |
73 |
|
74 |
@param result: characteristics rturned by a L{FinleyProblem} run |
75 |
@type result: C{dict} |
76 |
@return: filtered values |
77 |
@rtype: C{list} of C{str} |
78 |
""" |
79 |
out=[] |
80 |
for a in self.__args: |
81 |
out.append(result[a]) |
82 |
return out |
83 |
|
84 |
class FinleyOptions(Options): |
85 |
""" |
86 |
finley solver options to be handed over to paso |
87 |
|
88 |
""" |
89 |
def __init__(self,solver_method=None, |
90 |
preconditioner=None, |
91 |
package=None, |
92 |
tolerance=None, |
93 |
verbose=False): |
94 |
self.strmap={ |
95 |
LinearPDE.DIRECT : "DIRECT", |
96 |
LinearPDE.PCG: "PCG", |
97 |
LinearPDE.CR: "CR", |
98 |
LinearPDE.CGS: "CGS", |
99 |
LinearPDE.BICGSTAB: "BICGSTAB", |
100 |
LinearPDE.SSOR: "SSOR", |
101 |
LinearPDE.ILU0: "ILU0", |
102 |
LinearPDE.ILUT: "ILUT", |
103 |
LinearPDE.JACOBI: "JACOBI", |
104 |
LinearPDE.GMRES: "GMRES", |
105 |
LinearPDE.PRES20: "PRES20", |
106 |
LinearPDE.LUMPING: "LUMPIMG", |
107 |
LinearPDE.NO_REORDERING: "NO_REORDERING", |
108 |
LinearPDE.MINIMUM_FILL_IN: "MINIMUM_FILL_IN", |
109 |
LinearPDE.NESTED_DISSECTION: "NESTED_DISSECTION", |
110 |
LinearPDE.SCSL: "SCSL", |
111 |
LinearPDE.MKL: "MKL", |
112 |
LinearPDE.UMFPACK: "UMFPACK", |
113 |
LinearPDE.PASO: "PASO" |
114 |
} |
115 |
name="" |
116 |
if solver_method==None: |
117 |
solver_method==LinearPDE.PRES20 |
118 |
else: |
119 |
name+=self.strmap[solver_method] |
120 |
if preconditioner==None: |
121 |
preconditioner==LinearPDE.JACOBI |
122 |
else: |
123 |
if not name=="": name+="+" |
124 |
name+=self.strmap[preconditioner] |
125 |
if package==None: |
126 |
package==LinearPDE.PASO |
127 |
else: |
128 |
if not name=="": name+=" with " |
129 |
name+=self.strmap[package] |
130 |
if tolerance==None: |
131 |
tolerance=1.e-8 |
132 |
else: |
133 |
if not name=="": name+=", " |
134 |
name+="tol = %s"%tolerance |
135 |
self.solver_method=solver_method |
136 |
self.preconditioner=preconditioner |
137 |
self.tolerance=tolerance |
138 |
self.package=package |
139 |
self.verbose=verbose |
140 |
super(FinleyOptions,self).__init__(name=name) |
141 |
|
142 |
|
143 |
|
144 |
class FinleyProblem(BenchmarkProblem): |
145 |
""" |
146 |
The general benchmark problem for Finley |
147 |
""" |
148 |
def run(self,options): |
149 |
""" |
150 |
creates a domain and a PDE on this domain, solves it (with the given options) and returns the |
151 |
elapsed time and the error. |
152 |
|
153 |
@param options: paso solver options |
154 |
@type options: L{PasoOptions} |
155 |
@return: elapsed time and the error of calculated solution |
156 |
@rtype: pair of C{float} |
157 |
""" |
158 |
domain=self.getDomain() |
159 |
pde,u=self.getTestProblem(domain) |
160 |
pde.setTolerance(options.tolerance) |
161 |
pde.setSolverMethod(options.solver_method,options.preconditioner) |
162 |
pde.setSolverPackage(options.package) |
163 |
a=os.times()[4] |
164 |
uh=pde.getSolution(verbose=options.verbose) |
165 |
a=os.times()[4]-a |
166 |
if u==None: |
167 |
return {FinleyFilter.TIME : a , FinleyFilter.ERROR : None } |
168 |
else: |
169 |
error=Lsup(u-uh)/Lsup(u) |
170 |
return {FinleyFilter.TIME : a , FinleyFilter.ERROR : error } |
171 |
|
172 |
def getTestProblem(self,domain): |
173 |
""" |
174 |
returns a PDEto be solved and an exact solution |
175 |
|
176 |
@param domain: the PDE domain |
177 |
@type domain: L{escript.Domain} |
178 |
@return: a linear PDE to be solved an a reference solution |
179 |
@rtype: L{LinearPDE},L{escript.Data} |
180 |
@remark: must be overwritten by a particular problem |
181 |
""" |
182 |
raise NotImplementedError |
183 |
|
184 |
def getDomain(self): |
185 |
""" |
186 |
returns the domain of the problem |
187 |
|
188 |
@return: a domain |
189 |
@rtype: L{escript.Domain} |
190 |
@remark: must be overwritten by a particular problem |
191 |
""" |
192 |
raise NotImplementedError |
193 |
|
194 |
class RegularFinleyProblem(FinleyProblem): |
195 |
""" |
196 |
base class for finley problem on a rectangular mesh |
197 |
""" |
198 |
def __init__(self,n=1,order=1,dim=2): |
199 |
""" |
200 |
sets up a recangular mesh in finley on a unit cube/square |
201 |
|
202 |
@param n: number of elements in each spactial direction |
203 |
@type n: C{int} |
204 |
@param order: element order |
205 |
@type order: 1 or 2 |
206 |
@param dim: spatial dimension |
207 |
@type n: 2 or 3 |
208 |
""" |
209 |
super(RegularFinleyProblem,self).__init__(name=str((order*n+1)**dim)) |
210 |
self.__n=n |
211 |
self.__order=order |
212 |
self.__dim=dim |
213 |
|
214 |
def getDomain(self): |
215 |
""" |
216 |
returns the unit square/cube with a rectangular mesh |
217 |
|
218 |
@return: a domain |
219 |
@rtype: L{escript.Domain} |
220 |
""" |
221 |
if self.__dim==2: |
222 |
domain=esys.finley.Rectangle(n0=self.__n,n1=self.__n,order=self.__order) |
223 |
else: |
224 |
domain=esys.finley.Brick(n0=self.__n,n1=self.__n,n2=self.__n,order=self.__order) |
225 |
return domain |
226 |
|
227 |
class LaplaceProblem(RegularFinleyProblem): |
228 |
""" |
229 |
base class for the Lapalce eqaution on a rectangular mesh |
230 |
""" |
231 |
def getTestProblem(self,domain): |
232 |
""" |
233 |
returns a PDE and a test solution on the given domain |
234 |
|
235 |
@param doamin: a domain |
236 |
@type domain: L{escript.Domain} |
237 |
@return: the Laplace equation and a test solution |
238 |
@rtype: C{tuple} of C{LinearPDE} and C{escript.Data} |
239 |
""" |
240 |
x=domain.getX() |
241 |
msk=whereZero(x[0])+whereZero(x[0]-1.) |
242 |
u=x[0] |
243 |
for i in range(1,domain.getDim()): |
244 |
msk+=whereZero(x[i])+whereZero(x[i]-1.) |
245 |
u*=(x[i]-i) |
246 |
pde=LinearPDE(domain) |
247 |
pde.setSymmetryOn() |
248 |
pde.setValue(A=kronecker(domain),q=msk,r=u) |
249 |
return pde,u |
250 |
|
251 |
class Laplace2DOrder1_30k(LaplaceProblem): |
252 |
def __init__(self): |
253 |
super(Laplace2DOrder1_30k,self).__init__(n=172,order=1,dim=2) |
254 |
class Laplace2DOrder1_60k(LaplaceProblem): |
255 |
def __init__(self): |
256 |
super(Laplace2DOrder1_60k,self).__init__(n=244,order=1,dim=2) |
257 |
class Laplace2DOrder1_120k(LaplaceProblem): |
258 |
def __init__(self): |
259 |
super(Laplace2DOrder1_120k,self).__init__(n=345,order=1,dim=2) |
260 |
class Laplace2DOrder1_240k(LaplaceProblem): |
261 |
def __init__(self): |
262 |
super(Laplace2DOrder1_240k,self).__init__(n=489,order=1,dim=2) |
263 |
class Laplace2DOrder1_480k(LaplaceProblem): |
264 |
def __init__(self): |
265 |
super(Laplace2DOrder1_480k,self).__init__(n=692,order=1,dim=2) |
266 |
class Laplace2DOrder1_960k(LaplaceProblem): |
267 |
def __init__(self): |
268 |
super(Laplace2DOrder1_960k,self).__init__(n=979,order=1,dim=2) |
269 |
class Laplace2DOrder1_1920k(LaplaceProblem): |
270 |
def __init__(self): |
271 |
super(Laplace2DOrder1_1920k,self).__init__(n=1385,order=1,dim=2) |
272 |
class Laplace2DOrder1_3840k(LaplaceProblem): |
273 |
def __init__(self): |
274 |
super(Laplace2DOrder1_3840k,self).__init__(n=1959,order=1,dim=2) |
275 |
class Laplace2DOrder1_7680k(LaplaceProblem): |
276 |
def __init__(self): |
277 |
super(Laplace2DOrder1_7680k,self).__init__(n=2770,order=1,dim=2) |
278 |
class Laplace2DOrder1_15360k(LaplaceProblem): |
279 |
def __init__(self): |
280 |
super(Laplace2DOrder1_15360k,self).__init__(n=3918,order=1,dim=2) |
281 |
class Laplace2DOrder2_30k(LaplaceProblem): |
282 |
def __init__(self): |
283 |
super(Laplace2DOrder2_30k,self).__init__(n=86,order=2,dim=2) |
284 |
class Laplace2DOrder2_60k(LaplaceProblem): |
285 |
def __init__(self): |
286 |
super(Laplace2DOrder2_60k,self).__init__(n=122,order=2,dim=2) |
287 |
class Laplace2DOrder2_120k(LaplaceProblem): |
288 |
def __init__(self): |
289 |
super(Laplace2DOrder2_120k,self).__init__(n=173,order=2,dim=2) |
290 |
class Laplace2DOrder2_240k(LaplaceProblem): |
291 |
def __init__(self): |
292 |
super(Laplace2DOrder2_240k,self).__init__(n=244,order=2,dim=2) |
293 |
class Laplace2DOrder2_480k(LaplaceProblem): |
294 |
def __init__(self): |
295 |
super(Laplace2DOrder2_480k,self).__init__(n=346,order=2,dim=2) |
296 |
class Laplace2DOrder2_960k(LaplaceProblem): |
297 |
def __init__(self): |
298 |
super(Laplace2DOrder2_960k,self).__init__(n=489,order=2,dim=2) |
299 |
class Laplace2DOrder2_1920k(LaplaceProblem): |
300 |
def __init__(self): |
301 |
super(Laplace2DOrder2_1920k,self).__init__(n=692,order=2,dim=2) |
302 |
class Laplace2DOrder2_3840k(LaplaceProblem): |
303 |
def __init__(self): |
304 |
super(Laplace2DOrder2_3840k,self).__init__(n=979,order=2,dim=2) |
305 |
class Laplace2DOrder2_7680k(LaplaceProblem): |
306 |
def __init__(self): |
307 |
super(Laplace2DOrder2_7680k,self).__init__(n=1385,order=2,dim=2) |
308 |
class Laplace2DOrder2_15360k(LaplaceProblem): |
309 |
def __init__(self): |
310 |
super(Laplace2DOrder2_15360k,self).__init__(n=1959,order=2,dim=2) |
311 |
class Laplace3DOrder1_30k(LaplaceProblem): |
312 |
def __init__(self): |
313 |
super(Laplace3DOrder1_30k,self).__init__(n=30,order=1,dim=3) |
314 |
class Laplace3DOrder1_60k(LaplaceProblem): |
315 |
def __init__(self): |
316 |
super(Laplace3DOrder1_60k,self).__init__(n=38,order=1,dim=3) |
317 |
class Laplace3DOrder1_120k(LaplaceProblem): |
318 |
def __init__(self): |
319 |
super(Laplace3DOrder1_120k,self).__init__(n=48,order=1,dim=3) |
320 |
class Laplace3DOrder1_240k(LaplaceProblem): |
321 |
def __init__(self): |
322 |
super(Laplace3DOrder1_240k,self).__init__(n=61,order=1,dim=3) |
323 |
class Laplace3DOrder1_480k(LaplaceProblem): |
324 |
def __init__(self): |
325 |
super(Laplace3DOrder1_480k,self).__init__(n=77,order=1,dim=3) |
326 |
class Laplace3DOrder1_960k(LaplaceProblem): |
327 |
def __init__(self): |
328 |
super(Laplace3DOrder1_960k,self).__init__(n=98,order=1,dim=3) |
329 |
class Laplace3DOrder1_1920k(LaplaceProblem): |
330 |
def __init__(self): |
331 |
super(Laplace3DOrder1_1920k,self).__init__(n=123,order=1,dim=3) |
332 |
class Laplace3DOrder1_3840k(LaplaceProblem): |
333 |
def __init__(self): |
334 |
super(Laplace3DOrder1_3840k,self).__init__(n=156,order=1,dim=3) |
335 |
class Laplace3DOrder1_7680k(LaplaceProblem): |
336 |
def __init__(self): |
337 |
super(Laplace3DOrder1_7680k,self).__init__(n=196,order=1,dim=3) |
338 |
class Laplace3DOrder1_15360k(LaplaceProblem): |
339 |
def __init__(self): |
340 |
super(Laplace3DOrder1_15360k,self).__init__(n=248,order=1,dim=3) |
341 |
class Laplace3DOrder2_30k(LaplaceProblem): |
342 |
def __init__(self): |
343 |
super(Laplace3DOrder2_30k,self).__init__(n=15,order=2,dim=3) |
344 |
class Laplace3DOrder2_60k(LaplaceProblem): |
345 |
def __init__(self): |
346 |
super(Laplace3DOrder2_60k,self).__init__(n=19,order=2,dim=3) |
347 |
class Laplace3DOrder2_120k(LaplaceProblem): |
348 |
def __init__(self): |
349 |
super(Laplace3DOrder2_120k,self).__init__(n=24,order=2,dim=3) |
350 |
class Laplace3DOrder2_240k(LaplaceProblem): |
351 |
def __init__(self): |
352 |
super(Laplace3DOrder2_240k,self).__init__(n=31,order=2,dim=3) |
353 |
class Laplace3DOrder2_480k(LaplaceProblem): |
354 |
def __init__(self): |
355 |
super(Laplace3DOrder2_480k,self).__init__(n=39,order=2,dim=3) |
356 |
class Laplace3DOrder2_960k(LaplaceProblem): |
357 |
def __init__(self): |
358 |
super(Laplace3DOrder2_960k,self).__init__(n=49,order=2,dim=3) |
359 |
class Laplace3DOrder2_1920k(LaplaceProblem): |
360 |
def __init__(self): |
361 |
super(Laplace3DOrder2_1920k,self).__init__(n=62,order=2,dim=3) |
362 |
class Laplace3DOrder2_3840k(LaplaceProblem): |
363 |
def __init__(self): |
364 |
super(Laplace3DOrder2_3840k,self).__init__(n=78,order=2,dim=3) |
365 |
class Laplace3DOrder2_7680k(LaplaceProblem): |
366 |
def __init__(self): |
367 |
super(Laplace3DOrder2_7680k,self).__init__(n=98,order=2,dim=3) |
368 |
class Laplace3DOrder2_15360k(LaplaceProblem): |
369 |
def __init__(self): |
370 |
super(Laplace3DOrder2_15360k,self).__init__(n=124,order=2,dim=3) |
371 |
|
372 |
if __name__=="__main__": |
373 |
test="" |
374 |
n0=30000 |
375 |
for d in [2,3]: |
376 |
for o in [1,2]: |
377 |
for i in range(10): |
378 |
dofs=n0*2**i |
379 |
n=int((float(dofs)**(1./float(d))-1)/o+0.5) |
380 |
name="Laplace%sDOrder%s_%sk"%(d,o,dofs/1000) |
381 |
print "class %s(LaplaceProblem):"%name |
382 |
print " def __init__(self):" |
383 |
print " super(%s,self).__init__(n=%s,order=%s,dim=%s)"%(name,n,o,d) |
384 |
test+="addProblem(%s())\n"%name |
385 |
print test |
386 |
|