1 |
/* |
2 |
************************************************************ |
3 |
* Copyright 2006 by ACcESS MNRF * |
4 |
* * |
5 |
* http://www.access.edu.au * |
6 |
* Primary Business: Queensland, Australia * |
7 |
* Licensed under the Open Software License version 3.0 * |
8 |
* http://www.opensource.org/licenses/osl-3.0.php * |
9 |
* * |
10 |
************************************************************ |
11 |
*/ |
12 |
|
13 |
/**************************************************************/ |
14 |
|
15 |
/* Finley: generates rectangular meshes */ |
16 |
|
17 |
/* Generates a numElements[0] x numElements[1] x numElements[2] mesh with first order elements (Hex8) in the brick */ |
18 |
/* [0,Length[0]] x [0,Length[1]] x [0,Length[2]]. order is the desired accuracy of the */ |
19 |
/* integration scheme. */ |
20 |
|
21 |
/**************************************************************/ |
22 |
|
23 |
/* Author: gross@access.edu.au */ |
24 |
/* Version: $Id$ */ |
25 |
|
26 |
/**************************************************************/ |
27 |
|
28 |
#include "RectangularMesh.h" |
29 |
|
30 |
/**************************************************************/ |
31 |
|
32 |
#ifdef PASO_MPI |
33 |
/* get the number of nodes/elements for domain with rank=rank, of size processors |
34 |
where n is the total number of nodes/elements in the global domain */ |
35 |
static index_t domain_MODdim( index_t rank, index_t size, index_t n ) |
36 |
{ |
37 |
rank = size-rank-1; |
38 |
|
39 |
if( rank < n%size ) |
40 |
return (index_t)floor(n/size)+1; |
41 |
return (index_t)floor(n/size); |
42 |
} |
43 |
|
44 |
|
45 |
/* Determines the number of nodes/elements etc along an axis which is numElementsGlobal long for domain rank */ |
46 |
/* A bit messy, but it only has to be done once... */ |
47 |
static void domain_calculateDimension( index_t rank, dim_t size, dim_t numElementsGlobal, bool_t periodic, dim_t *numNodesLocal, dim_t *numDOFLocal, dim_t *numElementsLocal, dim_t *numElementsInternal, dim_t *firstNode, dim_t *nodesExternal, dim_t *DOFExternal, dim_t *numNodesExternal, bool_t *periodicLocal ) |
48 |
{ |
49 |
index_t i0; |
50 |
dim_t numNodesGlobal = numElementsGlobal+1; |
51 |
|
52 |
(*numNodesLocal) = domain_MODdim( rank, size, numNodesGlobal ); |
53 |
|
54 |
numElementsLocal[0] = numNodesLocal[0]+1; |
55 |
periodicLocal[0] = periodicLocal[1] = FALSE; |
56 |
nodesExternal[0] = nodesExternal[1] = 1; |
57 |
if( periodic ) |
58 |
{ |
59 |
if( size==1 ) |
60 |
{ |
61 |
numElementsLocal[0] = numElementsGlobal; |
62 |
nodesExternal[0] = nodesExternal[1] = 0; |
63 |
periodicLocal[0] = periodicLocal[1] = TRUE; |
64 |
} |
65 |
else |
66 |
{ |
67 |
if( rank==0 ) |
68 |
{ |
69 |
periodicLocal[0] = TRUE; |
70 |
numNodesLocal[0]++; |
71 |
} |
72 |
if( rank==(size-1) ) |
73 |
{ |
74 |
periodicLocal[1] = TRUE; |
75 |
numNodesLocal[0]--; |
76 |
numElementsLocal[0]--; |
77 |
} |
78 |
} |
79 |
} |
80 |
else if( !periodic ) |
81 |
{ |
82 |
if( rank==0 ){ |
83 |
nodesExternal[0]--; |
84 |
numElementsLocal[0]--; |
85 |
} |
86 |
if( rank==(size-1) ) |
87 |
{ |
88 |
nodesExternal[1]--; |
89 |
numElementsLocal[0]--; |
90 |
} |
91 |
} |
92 |
numNodesExternal[0] = nodesExternal[0]+nodesExternal[1]; |
93 |
|
94 |
numElementsInternal[0] = numElementsLocal[0]; |
95 |
if( (rank==0) && (rank==size-1) ); |
96 |
|
97 |
else if( !periodic && ( (rank==0) ^ (rank==size-1) ) ) |
98 |
numElementsInternal[0] -= 1; |
99 |
else |
100 |
numElementsInternal[0] -= 2; |
101 |
|
102 |
firstNode[0] = 0; |
103 |
for( i0=0; i0<rank; i0++ ) |
104 |
firstNode[0] += domain_MODdim( i0, size, numNodesGlobal ); |
105 |
|
106 |
numDOFLocal[0] = numNodesLocal[0]; |
107 |
if( periodicLocal[0] ) |
108 |
{ |
109 |
numDOFLocal[0]--; |
110 |
} |
111 |
DOFExternal[0] = nodesExternal[0]; |
112 |
DOFExternal[1] = nodesExternal[1]; |
113 |
} |
114 |
|
115 |
void print_mesh_statistics( Finley_Mesh *out ) |
116 |
{ |
117 |
index_t i, j, N; |
118 |
|
119 |
printf( "\nNodes\n=====\n\n" ); |
120 |
printf( "\t%d internal DOF\n\t%d boundary DOF\n\t%d local DOF\n\t%d external DOF\n", out->Nodes->degreeOfFreedomDistribution->numInternal, out->Nodes->degreeOfFreedomDistribution->numBoundary, out->Nodes->degreeOfFreedomDistribution->numLocal, out->Nodes->degreeOfFreedomDistribution->numExternal); |
121 |
for( i=0; i<out->Nodes->numNodes; i++ ) |
122 |
printf( "node %d\t: id %d \tDOF %d \t: tag %d \t: coordinates [%3g, %3g, %3g]\n", i, out->Nodes->Id[i], out->Nodes->degreeOfFreedom[i], out->Nodes->Tag[i], out->Nodes->Coordinates[INDEX2(0,i,3)], out->Nodes->Coordinates[INDEX2(1,i,3)], out->Nodes->Coordinates[INDEX2(2,i,3)] ); |
123 |
|
124 |
printf( "Elements\n========\n\n" ); |
125 |
printf( "\t%d internal\n\t%d boundary\n\t%d local\n", out->Elements->elementDistribution->numInternal, out->Elements->elementDistribution->numBoundary, out->Elements->elementDistribution->numLocal ); |
126 |
N = out->Elements->ReferenceElement->Type->numNodes; |
127 |
for( i=0; i<out->Elements->numElements; i++ ){ |
128 |
printf( "element %d \t: id %d \t: nodes [ %3d, %3d, %3d, %3d, %3d, %3d, %3d, %3d ]", i, out->Elements->Id[i], out->Elements->Nodes[INDEX2(0,i,8)], out->Elements->Nodes[INDEX2(1,i,8)], out->Elements->Nodes[INDEX2(2,i,8)], out->Elements->Nodes[INDEX2(3,i,8)], out->Elements->Nodes[INDEX2(4,i,8)], out->Elements->Nodes[INDEX2(5,i,8)], out->Elements->Nodes[INDEX2(6,i,8)], out->Elements->Nodes[INDEX2(7,i,8)] ); |
129 |
printf( " DOF [ %3d", out->Nodes->degreeOfFreedom[out->Nodes->Id[out->Elements->Nodes[INDEX2(0,i,N)]]] ); |
130 |
for( j=1; j<N; j++ ) |
131 |
printf( ", %3d", out->Nodes->degreeOfFreedom[out->Nodes->Id[out->Elements->Nodes[INDEX2(j,i,N)]]] ); |
132 |
printf( " ]\n" ); |
133 |
} |
134 |
|
135 |
printf( "\nFace Elements\n==============\n\n" ); |
136 |
printf( "\t%d internal\n\t%d boundary\n\t%d local\n", out->FaceElements->elementDistribution->numInternal, out->FaceElements->elementDistribution->numBoundary, out->FaceElements->elementDistribution->numLocal ); |
137 |
N = out->FaceElements->ReferenceElement->Type->numNodes; |
138 |
for( i=0; i<out->FaceElements->numElements; i++ ){ |
139 |
printf( "face element %d \t: id %d \t: nodes [ %3d", i, out->FaceElements->Id[i], out->FaceElements->Nodes[INDEX2(0,i,N)] ); |
140 |
for( j=1; j<N; j++ ) |
141 |
printf( ", %3d", out->FaceElements->Nodes[INDEX2(j,i,N)] ); |
142 |
printf( " ] DOF [ %3d", out->Nodes->degreeOfFreedom[out->Nodes->Id[out->FaceElements->Nodes[INDEX2(0,i,N)]]] ); |
143 |
for( j=1; j<N; j++ ) |
144 |
printf( ", %3d", out->Nodes->degreeOfFreedom[out->Nodes->Id[out->FaceElements->Nodes[INDEX2(j,i,N)]]] ); |
145 |
printf( " ]\n" ); |
146 |
} |
147 |
} |
148 |
|
149 |
#endif |
150 |
|
151 |
#ifndef PASO_MPI |
152 |
Finley_Mesh* Finley_RectangularMesh_Hex8(dim_t* numElements,double* Length,bool_t* periodic, index_t order,bool_t useElementsOnFace) |
153 |
#else |
154 |
Finley_Mesh* Finley_RectangularMesh_Hex8_singleCPU(dim_t* numElements,double* Length,bool_t* periodic, index_t order,bool_t useElementsOnFace) |
155 |
#endif |
156 |
{ |
157 |
dim_t N0,N1,N2,NE0,NE1,NE2,i0,i1,i2,k,totalNECount,faceNECount,NDOF0,NDOF1,NDOF2,NFaceElements,NUMNODES,M0,M1,M2; |
158 |
index_t node0; |
159 |
Finley_Mesh* out; |
160 |
char name[50]; |
161 |
double time0=Finley_timer(); |
162 |
NE0=MAX(1,numElements[0]); |
163 |
NE1=MAX(1,numElements[1]); |
164 |
NE2=MAX(1,numElements[2]); |
165 |
N0=NE0+1; |
166 |
N1=NE1+1; |
167 |
N2=NE2+1; |
168 |
#ifdef PASO_MPI |
169 |
Paso_MPIInfo *mpi_info = NULL; |
170 |
|
171 |
/* get MPI information */ |
172 |
mpi_info = Paso_MPIInfo_alloc( MPI_COMM_WORLD ); |
173 |
if (! Finley_noError()) |
174 |
return NULL; |
175 |
#endif |
176 |
|
177 |
if (N0<=MIN(N1,N2)) { |
178 |
if (N1 <= N2) { |
179 |
M0=1; |
180 |
M1=N0; |
181 |
M2=N0*N1; |
182 |
} else { |
183 |
M0=1; |
184 |
M2=N0; |
185 |
M1=N0*N2; |
186 |
} |
187 |
} else if (N1<=MIN(N2,N0)) { |
188 |
if (N2 <= N0) { |
189 |
M1=1; |
190 |
M2=N1; |
191 |
M0=N2*N1; |
192 |
} else { |
193 |
M1=1; |
194 |
M0=N1; |
195 |
M2=N1*N0; |
196 |
} |
197 |
} else { |
198 |
if (N0 <= N1) { |
199 |
M2=1; |
200 |
M0=N2; |
201 |
M1=N2*N0; |
202 |
} else { |
203 |
M2=1; |
204 |
M1=N2; |
205 |
M0=N1*N2; |
206 |
} |
207 |
} |
208 |
|
209 |
|
210 |
NFaceElements=0; |
211 |
if (!periodic[0]) { |
212 |
NDOF0=N0; |
213 |
NFaceElements+=2*NE1*NE2; |
214 |
} else { |
215 |
NDOF0=N0-1; |
216 |
} |
217 |
if (!periodic[1]) { |
218 |
NDOF1=N1; |
219 |
NFaceElements+=2*NE0*NE2; |
220 |
} else { |
221 |
NDOF1=N1-1; |
222 |
} |
223 |
if (!periodic[2]) { |
224 |
NDOF2=N2; |
225 |
NFaceElements+=2*NE0*NE1; |
226 |
} else { |
227 |
NDOF2=N2-1; |
228 |
} |
229 |
|
230 |
/* allocate mesh: */ |
231 |
|
232 |
sprintf(name,"Rectangular %d x %d x %d mesh",N0,N1,N2); |
233 |
|
234 |
#ifndef PASO_MPI |
235 |
out=Finley_Mesh_alloc(name,3,order); |
236 |
#else |
237 |
out=Finley_Mesh_alloc(name,3,order,mpi_info); |
238 |
#endif |
239 |
if (! Finley_noError()) return NULL; |
240 |
|
241 |
#ifdef PASO_MPI |
242 |
out->Elements=Finley_ElementFile_alloc(Hex8,out->order,mpi_info); |
243 |
if (useElementsOnFace) { |
244 |
out->FaceElements=Finley_ElementFile_alloc(Hex8Face,out->order,mpi_info); |
245 |
out->ContactElements=Finley_ElementFile_alloc(Hex8Face_Contact,out->order,mpi_info); |
246 |
} else { |
247 |
out->FaceElements=Finley_ElementFile_alloc(Rec4,out->order,mpi_info); |
248 |
out->ContactElements=Finley_ElementFile_alloc(Rec4_Contact,out->order,mpi_info); |
249 |
} |
250 |
out->Points=Finley_ElementFile_alloc(Point1,out->order,mpi_info); |
251 |
#else |
252 |
out->Elements=Finley_ElementFile_alloc(Hex8,out->order); |
253 |
if (useElementsOnFace) { |
254 |
out->FaceElements=Finley_ElementFile_alloc(Hex8Face,out->order); |
255 |
out->ContactElements=Finley_ElementFile_alloc(Hex8Face_Contact,out->order); |
256 |
} else { |
257 |
out->FaceElements=Finley_ElementFile_alloc(Rec4,out->order); |
258 |
out->ContactElements=Finley_ElementFile_alloc(Rec4_Contact,out->order); |
259 |
} |
260 |
out->Points=Finley_ElementFile_alloc(Point1,out->order); |
261 |
#endif |
262 |
if (! Finley_noError()) { |
263 |
Finley_Mesh_dealloc(out); |
264 |
return NULL; |
265 |
} |
266 |
|
267 |
|
268 |
/* allocate tables: */ |
269 |
Finley_NodeFile_allocTable(out->Nodes,N0*N1*N2); |
270 |
#ifdef PASO_MPI |
271 |
Finley_NodeDistribution_allocTable( out->Nodes->degreeOfFreedomDistribution, NDOF0*NDOF1*NDOF2, 0, 0 ); |
272 |
#endif |
273 |
Finley_ElementFile_allocTable(out->Elements,NE0*NE1*NE2); |
274 |
Finley_ElementFile_allocTable(out->FaceElements,NFaceElements); |
275 |
if (! Finley_noError()) { |
276 |
Finley_Mesh_dealloc(out); |
277 |
return NULL; |
278 |
} |
279 |
|
280 |
/* set nodes: */ |
281 |
|
282 |
#pragma omp parallel for private(i0,i1,i2,k) |
283 |
for (i2=0;i2<N2;i2++) { |
284 |
for (i1=0;i1<N1;i1++) { |
285 |
for (i0=0;i0<N0;i0++) { |
286 |
k=M0*i0+M1*i1+M2*i2; |
287 |
out->Nodes->Coordinates[INDEX2(0,k,3)]=DBLE(i0)/DBLE(N0-1)*Length[0]; |
288 |
out->Nodes->Coordinates[INDEX2(1,k,3)]=DBLE(i1)/DBLE(N1-1)*Length[1]; |
289 |
out->Nodes->Coordinates[INDEX2(2,k,3)]=DBLE(i2)/DBLE(N2-1)*Length[2]; |
290 |
out->Nodes->Id[k]=i0+N0*i1+N0*N1*i2; |
291 |
out->Nodes->Tag[k]=0; |
292 |
out->Nodes->degreeOfFreedom[k]=M0*(i0%NDOF0) +M1*(i1%NDOF1) +M2*(i2%NDOF2); |
293 |
} |
294 |
} |
295 |
} |
296 |
/* tags for the faces: */ |
297 |
/* tags for the faces: */ |
298 |
if (!periodic[2]) { |
299 |
for (i1=0;i1<N1;i1++) { |
300 |
for (i0=0;i0<N0;i0++) { |
301 |
out->Nodes->Tag[M0*i0+M1*i1+M2*0]+=100; |
302 |
out->Nodes->Tag[M0*i0+M1*i1+M2*(N2-1)]+=200; |
303 |
} |
304 |
} |
305 |
} |
306 |
if (!periodic[1]) { |
307 |
for (i2=0;i2<N2;i2++) { |
308 |
for (i0=0;i0<N0;i0++) { |
309 |
out->Nodes->Tag[M0*i0+M1*0+M2*i2]+=10; |
310 |
out->Nodes->Tag[M0*i0+M1*(N1-1)+M2*i2]+=20; |
311 |
} |
312 |
} |
313 |
} |
314 |
if (!periodic[0]) { |
315 |
for (i2=0;i2<N2;i2++) { |
316 |
for (i1=0;i1<N1;i1++) { |
317 |
out->Nodes->Tag[M0*0+M1*i1+M2*i2]+=1; |
318 |
out->Nodes->Tag[M0*(N0-1)+M1*i1+M2*i2]+=2; |
319 |
} |
320 |
} |
321 |
} |
322 |
|
323 |
/* set the elements: */ |
324 |
|
325 |
#pragma omp parallel for private(i0,i1,i2,k,node0) |
326 |
for (i2=0;i2<NE2;i2++) { |
327 |
for (i1=0;i1<NE1;i1++) { |
328 |
for (i0=0;i0<NE0;i0++) { |
329 |
k=i0+NE0*i1+NE0*NE1*i2; |
330 |
node0=i0+i1*N0+N0*N1*i2; |
331 |
|
332 |
out->Elements->Id[k]=k; |
333 |
out->Elements->Tag[k]=0; |
334 |
out->Elements->Color[k]=COLOR_MOD(i0)+3*COLOR_MOD(i1)+9*COLOR_MOD(i2);; |
335 |
|
336 |
out->Elements->Nodes[INDEX2(0,k,8)]=node0; |
337 |
out->Elements->Nodes[INDEX2(1,k,8)]=node0+1; |
338 |
out->Elements->Nodes[INDEX2(2,k,8)]=node0+N0+1; |
339 |
out->Elements->Nodes[INDEX2(3,k,8)]=node0+N0; |
340 |
out->Elements->Nodes[INDEX2(4,k,8)]=node0+N0*N1; |
341 |
out->Elements->Nodes[INDEX2(5,k,8)]=node0+N0*N1+1; |
342 |
out->Elements->Nodes[INDEX2(6,k,8)]=node0+N0*N1+N0+1; |
343 |
out->Elements->Nodes[INDEX2(7,k,8)]=node0+N0*N1+N0; |
344 |
|
345 |
} |
346 |
} |
347 |
} |
348 |
out->Elements->minColor=0; |
349 |
out->Elements->maxColor=COLOR_MOD(0)+3*COLOR_MOD(0)+9*COLOR_MOD(0); |
350 |
|
351 |
/* face elements: */ |
352 |
|
353 |
if (useElementsOnFace) { |
354 |
NUMNODES=8; |
355 |
} else { |
356 |
NUMNODES=4; |
357 |
} |
358 |
totalNECount=NE0*NE1*NE2; |
359 |
faceNECount=0; |
360 |
|
361 |
/* these are the quadrilateral elements on boundary 1 (x3=0): */ |
362 |
if (!periodic[2]) { |
363 |
/* ** elements on boundary 100 (x3=0): */ |
364 |
|
365 |
#pragma omp parallel for private(i0,i1,k,node0) |
366 |
for (i1=0;i1<NE1;i1++) { |
367 |
for (i0=0;i0<NE0;i0++) { |
368 |
k=i0+NE0*i1+faceNECount; |
369 |
node0=i0+i1*N0; |
370 |
|
371 |
out->FaceElements->Id[k]=i0+NE0*i1+totalNECount; |
372 |
out->FaceElements->Tag[k]=100; |
373 |
out->FaceElements->Color[k]=(i0%2)+2*(i1%2); |
374 |
|
375 |
if (useElementsOnFace) { |
376 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
377 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N0; |
378 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N0+1; |
379 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+1; |
380 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0+N0*N1; |
381 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+N0*N1+N0; |
382 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N0*N1+N0+1; |
383 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+N0*N1+1; |
384 |
} else { |
385 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
386 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N0; |
387 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N0+1; |
388 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+1; |
389 |
} |
390 |
} |
391 |
} |
392 |
totalNECount+=NE1*NE0; |
393 |
faceNECount+=NE1*NE0; |
394 |
|
395 |
/* ** elements on boundary 200 (x3=1) */ |
396 |
|
397 |
#pragma omp parallel for private(i0,i1,k,node0) |
398 |
for (i1=0;i1<NE1;i1++) { |
399 |
for (i0=0;i0<NE0;i0++) { |
400 |
k=i0+NE0*i1+faceNECount; |
401 |
node0=i0+i1*N0+N0*N1*(NE2-1); |
402 |
|
403 |
out->FaceElements->Id[k]=i0+NE0*i1+totalNECount; |
404 |
out->FaceElements->Tag[k]=200; |
405 |
out->FaceElements->Color[k]=(i0%2)+2*(i1%2)+4; |
406 |
|
407 |
if (useElementsOnFace) { |
408 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+ N0 * N1; |
409 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+ N0 * N1+1; |
410 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+ N0 * N1+N0+1; |
411 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+ N0 * N1+N0; |
412 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0; |
413 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+1; |
414 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N0+1; |
415 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+N0; |
416 |
} else { |
417 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+ N0 * N1; |
418 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+ N0 * N1+1; |
419 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+ N0 * N1+N0+1; |
420 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+ N0 * N1+N0; |
421 |
} |
422 |
|
423 |
|
424 |
} |
425 |
} |
426 |
totalNECount+=NE1*NE0; |
427 |
faceNECount+=NE1*NE0; |
428 |
} |
429 |
if (!periodic[0]) { |
430 |
/* ** elements on boundary 001 (x1=0): */ |
431 |
|
432 |
#pragma omp parallel for private(i1,i2,k,node0) |
433 |
for (i2=0;i2<NE2;i2++) { |
434 |
for (i1=0;i1<NE1;i1++) { |
435 |
k=i1+NE1*i2+faceNECount; |
436 |
node0=i1*N0+N0*N1*i2; |
437 |
|
438 |
out->FaceElements->Id[k]=i1+NE1*i2+totalNECount; |
439 |
out->FaceElements->Tag[k]=1; |
440 |
out->FaceElements->Color[k]=(i2%2)+2*(i1%2)+8; |
441 |
|
442 |
if (useElementsOnFace) { |
443 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
444 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N0*N1; |
445 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N0*N1+N0; |
446 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N0; |
447 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0+1; |
448 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+N0*N1+1; |
449 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N0*N1+N0+1; |
450 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+N0+1; |
451 |
} else { |
452 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
453 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N0*N1; |
454 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N0*N1+N0; |
455 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N0; |
456 |
} |
457 |
} |
458 |
} |
459 |
totalNECount+=NE1*NE2; |
460 |
faceNECount+=NE1*NE2; |
461 |
|
462 |
/* ** elements on boundary 002 (x1=1): */ |
463 |
|
464 |
#pragma omp parallel for private(i1,i2,k,node0) |
465 |
for (i2=0;i2<NE2;i2++) { |
466 |
for (i1=0;i1<NE1;i1++) { |
467 |
k=i1+NE1*i2+faceNECount; |
468 |
node0=(NE0-1)+i1*N0+N0*N1*i2 ; |
469 |
|
470 |
out->FaceElements->Id[k]=i1+NE1*i2+totalNECount; |
471 |
out->FaceElements->Tag[k]=2; |
472 |
out->FaceElements->Color[k]=(i2%2)+2*(i1%2)+12; |
473 |
|
474 |
if (useElementsOnFace) { |
475 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+1; |
476 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N0+1; |
477 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N0*N1+N0+1; |
478 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N0*N1+1; |
479 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0; |
480 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+N0; |
481 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N0*N1+N0; |
482 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+N0*N1; |
483 |
} else { |
484 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+1; |
485 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N0+1; |
486 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N0*N1+N0+1; |
487 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N0*N1+1; |
488 |
} |
489 |
} |
490 |
} |
491 |
totalNECount+=NE1*NE2; |
492 |
faceNECount+=NE1*NE2; |
493 |
} |
494 |
if (!periodic[1]) { |
495 |
/* ** elements on boundary 010 (x2=0): */ |
496 |
|
497 |
#pragma omp parallel for private(i0,i2,k,node0) |
498 |
for (i2=0;i2<NE2;i2++) { |
499 |
for (i0=0;i0<NE0;i0++) { |
500 |
k=i0+NE0*i2+faceNECount; |
501 |
node0=i0+N0*N1*i2; |
502 |
|
503 |
out->FaceElements->Id[k]=i2+NE2*i0+totalNECount; |
504 |
out->FaceElements->Tag[k]=10; |
505 |
out->FaceElements->Color[k]=(i0%2)+2*(i2%2)+16; |
506 |
|
507 |
if (useElementsOnFace) { |
508 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
509 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+1; |
510 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1*N0+1; |
511 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N1*N0; |
512 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0+N0; |
513 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+N0+1; |
514 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N1*N0+N0+1; |
515 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+N1*N0+N0; |
516 |
} else { |
517 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
518 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+1; |
519 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1*N0+1; |
520 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N1*N0; |
521 |
} |
522 |
} |
523 |
} |
524 |
totalNECount+=NE0*NE2; |
525 |
faceNECount+=NE0*NE2; |
526 |
|
527 |
/* ** elements on boundary 020 (x2=1): */ |
528 |
|
529 |
#pragma omp parallel for private(i0,i2,k,node0) |
530 |
for (i2=0;i2<NE2;i2++) { |
531 |
for (i0=0;i0<NE0;i0++) { |
532 |
k=i0+NE0*i2+faceNECount; |
533 |
node0=i0+(NE1-1)*N0+N0*N1*i2; |
534 |
|
535 |
out->FaceElements->Tag[k]=20; |
536 |
out->FaceElements->Id[k]=i2+NE2*i0+totalNECount; |
537 |
out->FaceElements->Color[k]=(i0%2)+2*(i2%2)+20; |
538 |
|
539 |
if (useElementsOnFace) { |
540 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+N0; |
541 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N0*N1+N0; |
542 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N0*N1+N0+1; |
543 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N0+1; |
544 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0; |
545 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+N0*N1; |
546 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N0*N1+1; |
547 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+1; |
548 |
} else { |
549 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+N0; |
550 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N0*N1+N0; |
551 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N0*N1+N0+1; |
552 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N0+1; |
553 |
} |
554 |
|
555 |
} |
556 |
} |
557 |
totalNECount+=NE0*NE2; |
558 |
faceNECount+=NE0*NE2; |
559 |
} |
560 |
out->FaceElements->minColor=0; |
561 |
out->FaceElements->maxColor=23; |
562 |
|
563 |
/* face elements done: */ |
564 |
|
565 |
#ifdef PASO_MPI |
566 |
/* make sure that the trivial distribution data is correct */ |
567 |
out->FaceElements->elementDistribution->numBoundary = 0; |
568 |
out->FaceElements->elementDistribution->numLocal = out->FaceElements->elementDistribution->numInternal = faceNECount; |
569 |
out->Elements->elementDistribution->numBoundary = 0; |
570 |
out->Elements->elementDistribution->numLocal = out->Elements->elementDistribution->numInternal = out->Elements->numElements; |
571 |
out->ContactElements->elementDistribution->numLocal = out->ContactElements->elementDistribution->numInternal = out->ContactElements->elementDistribution->numInternal = 0; |
572 |
out->Points->elementDistribution->numLocal = out->Points->elementDistribution->numInternal = out->Points->elementDistribution->numInternal = 0; |
573 |
|
574 |
out->Nodes->degreeOfFreedomDistribution->numInternal = out->Nodes->degreeOfFreedomDistribution->numLocal; |
575 |
out->Nodes->degreeOfFreedomDistribution->numBoundary = 0; |
576 |
#endif |
577 |
/* condense the nodes: */ |
578 |
Finley_Mesh_resolveNodeIds(out); |
579 |
|
580 |
#ifdef PASO_MPI |
581 |
/* setup the CommBuffer */ |
582 |
Finley_NodeDistribution_formCommBuffer( out->Nodes->degreeOfFreedomDistribution, out->Nodes->CommBuffer ); |
583 |
if ( !Finley_MPI_noError( mpi_info )) { |
584 |
if( Finley_noError() ) |
585 |
Finley_setError( PASO_MPI_ERROR, "Error on another MPI process" ); |
586 |
Paso_MPIInfo_dealloc( mpi_info ); |
587 |
Finley_Mesh_dealloc(out); |
588 |
return NULL; |
589 |
} |
590 |
#endif |
591 |
|
592 |
/* prepare mesh for further calculatuions:*/ |
593 |
Finley_Mesh_prepare(out) ; |
594 |
|
595 |
#ifdef Finley_TRACE |
596 |
printf("timing: mesh generation: %.4e sec\n",Finley_timer()-time0); |
597 |
#endif |
598 |
|
599 |
if (! Finley_noError()) { |
600 |
Finley_Mesh_dealloc(out); |
601 |
return NULL; |
602 |
} |
603 |
return out; |
604 |
} |
605 |
|
606 |
#ifdef PASO_MPI |
607 |
Finley_Mesh* Finley_RectangularMesh_Hex8(dim_t* numElements,double* Length,bool_t* periodic, index_t order,bool_t useElementsOnFace) |
608 |
{ |
609 |
dim_t N0,N1,N2,NE0,NE1,NE2,i0,i1,i2,k,totalNECount,faceNECount,NDOF0,NDOF1,NDOF2,NFaceElements,NUMNODES;//,M0,M1,M2; |
610 |
dim_t idCount, NE0_local, numNodesLocal, numDOFLocal, numElementsLocal, numElementsInternal, nodesExternal[2], DOFExternal[2], numNodesExternal; |
611 |
bool_t dom_left, dom_right, dom_internal; |
612 |
|
613 |
index_t N0dom; |
614 |
index_t firstNode=0, DOFcount=0, forwardDOF[2], backwardDOF[2], node0, node1, node2; |
615 |
index_t targetDomain=-1; |
616 |
bool_t periodicLocal[2], domLeft=FALSE, domRight=FALSE, domInternal=FALSE; |
617 |
index_t *indexForward=NULL; |
618 |
Finley_Mesh* out; |
619 |
|
620 |
char name[50]; |
621 |
Paso_MPIInfo *mpi_info = NULL; |
622 |
double time0=Finley_timer(); |
623 |
|
624 |
NE0=MAX(1,numElements[0]); |
625 |
NE1=MAX(1,numElements[1]); |
626 |
NE2=MAX(1,numElements[2]); |
627 |
N0=NE0+1; |
628 |
N1=NE1+1; |
629 |
N2=NE2+1; |
630 |
|
631 |
|
632 |
/* get MPI information */ |
633 |
mpi_info = Paso_MPIInfo_alloc( MPI_COMM_WORLD ); |
634 |
if (! Finley_noError()) |
635 |
return NULL; |
636 |
|
637 |
/* use the serial version to generate the mesh for the 1-CPU case */ |
638 |
if( mpi_info->size==1 ) |
639 |
{ |
640 |
Paso_MPIInfo_dealloc( mpi_info ); |
641 |
out = Finley_RectangularMesh_Hex8_singleCPU( numElements, Length, periodic, order, useElementsOnFace ); |
642 |
//print_mesh_statistics( out ); |
643 |
return out; |
644 |
} |
645 |
|
646 |
if( mpi_info->rank==0 ) |
647 |
domLeft = TRUE; |
648 |
if( mpi_info->rank==mpi_info->size-1 ) |
649 |
domRight = TRUE; |
650 |
if( mpi_info->rank>0 && mpi_info->rank<mpi_info->size-1 ) |
651 |
domInternal = TRUE; |
652 |
|
653 |
/* dimensions of the local subdomain */ |
654 |
domain_calculateDimension( mpi_info->rank, mpi_info->size, NE0, periodic[0], &numNodesLocal, &numDOFLocal, &numElementsLocal, &numElementsInternal, &firstNode, nodesExternal, DOFExternal, &numNodesExternal, periodicLocal ); |
655 |
|
656 |
/* count Degrees of Freedom along each axis */ |
657 |
NDOF0 = N0 - periodic[0]; |
658 |
NDOF1 = N1 - periodic[1]; |
659 |
NDOF2 = N2 - periodic[2]; |
660 |
|
661 |
/* count face elements */ |
662 |
/* internal face elements */ |
663 |
NFaceElements = 0; |
664 |
if( !periodic[0] ) |
665 |
NFaceElements += (domLeft+domRight)*NE1*NE2; |
666 |
if( !periodic[1] ) |
667 |
NFaceElements += 2*numElementsInternal*NE2; |
668 |
if( !periodic[2] ) |
669 |
NFaceElements += 2*numElementsInternal*NE1; |
670 |
/* boundary face elements */ |
671 |
/* this is looks nasty, but it beats a bunch of nested if/then/else carry-on */ |
672 |
NFaceElements += 2*( 2 - (domLeft + domRight)*(!periodic[0]) )*( (!periodic[1])*NE2 + (!periodic[2])*NE1 ); |
673 |
|
674 |
|
675 |
/* allocate mesh: */ |
676 |
sprintf(name,"Rectangular %d x %d x %d mesh",N0,N1,N2); |
677 |
|
678 |
out=Finley_Mesh_alloc(name,3,order,mpi_info); |
679 |
if (! Finley_noError()) return NULL; |
680 |
|
681 |
out->Elements=Finley_ElementFile_alloc(Hex8,out->order,mpi_info); |
682 |
if (useElementsOnFace) { |
683 |
out->FaceElements=Finley_ElementFile_alloc(Hex8Face,out->order,mpi_info); |
684 |
out->ContactElements=Finley_ElementFile_alloc(Hex8Face_Contact,out->order,mpi_info); |
685 |
} else { |
686 |
out->FaceElements=Finley_ElementFile_alloc(Rec4,out->order,mpi_info); |
687 |
out->ContactElements=Finley_ElementFile_alloc(Rec4_Contact,out->order,mpi_info); |
688 |
} |
689 |
out->Points=Finley_ElementFile_alloc(Point1,out->order,mpi_info); |
690 |
|
691 |
if (! Finley_noError()) { |
692 |
Finley_Mesh_dealloc(out); |
693 |
return NULL; |
694 |
} |
695 |
|
696 |
|
697 |
/* allocate tables: */ |
698 |
Finley_NodeFile_allocTable(out->Nodes,(numNodesLocal+2-!periodic[0]*(domLeft+domRight))*N1*N2); |
699 |
Finley_NodeDistribution_allocTable( out->Nodes->degreeOfFreedomDistribution, numDOFLocal*NDOF1*NDOF2, (DOFExternal[0]+DOFExternal[1])*NDOF1*NDOF2, 0 ); |
700 |
Finley_ElementFile_allocTable(out->Elements,(numElementsLocal)*NE1*NE2); |
701 |
Finley_ElementFile_allocTable(out->FaceElements,NFaceElements); |
702 |
if (! Finley_noError()) { |
703 |
Finley_Mesh_dealloc(out); |
704 |
return NULL; |
705 |
} |
706 |
|
707 |
/* set nodes: */ |
708 |
/* INTERNAL/BOUNDARY NODES */ |
709 |
k=0; |
710 |
#pragma omp parallel for private(i0,i1,i2,k) |
711 |
for (i2=0;i2<N2;i2++) { |
712 |
for (i1=0;i1<N1;i1++) { |
713 |
for (i0=0;i0<numNodesLocal-domLeft*periodic[0];i0++,k++) { |
714 |
out->Nodes->Coordinates[INDEX2(0,k,3)]=DBLE(i0+firstNode)/DBLE(N0-1)*Length[0]; |
715 |
out->Nodes->Coordinates[INDEX2(1,k,3)]=DBLE(i1)/DBLE(N1-1)*Length[1]; |
716 |
out->Nodes->Coordinates[INDEX2(2,k,3)]=DBLE(i2)/DBLE(N2-1)*Length[2]; |
717 |
out->Nodes->Id[k]=k; |
718 |
out->Nodes->Tag[k]=0; |
719 |
out->Nodes->degreeOfFreedom[k]=k; |
720 |
} |
721 |
} |
722 |
} |
723 |
if( domLeft && periodic[0] ) { |
724 |
for (i2=0;i2<N2;i2++) { |
725 |
for (i1=0;i1<N1;i1++, k++) { |
726 |
out->Nodes->Coordinates[INDEX2(0,k,3)]=Length[0]; |
727 |
out->Nodes->Coordinates[INDEX2(1,k,3)]=DBLE(i1)/DBLE(N1-1)*Length[1]; |
728 |
out->Nodes->Coordinates[INDEX2(2,k,3)]=DBLE(i2)/DBLE(N2-1)*Length[2]; |
729 |
out->Nodes->Id[k]=k; |
730 |
out->Nodes->Tag[k]=0; |
731 |
out->Nodes->degreeOfFreedom[k]=i1*numNodesLocal + i2*numNodesLocal*N1; |
732 |
} |
733 |
} |
734 |
/* tag the faces for this special case */ |
735 |
if( !periodic[1] ) |
736 |
{ |
737 |
for( i2=0; i2<N2; i2++ ){ |
738 |
out->Nodes->Tag[k + (i2-N2)*N1 ] += 10; |
739 |
out->Nodes->Tag[k + (i2+1-N2)*N1 -1] += 20; |
740 |
} |
741 |
} |
742 |
if( !periodic[2] ) |
743 |
{ |
744 |
for( i1=0; i1<N1; i1++ ){ |
745 |
out->Nodes->Tag[k -N1*N2 +i1] += 100; |
746 |
out->Nodes->Tag[k -N1 +i1] += 200; |
747 |
} |
748 |
} |
749 |
} |
750 |
/* tags for the faces: */ |
751 |
N0dom = (numNodesLocal-periodicLocal[0]); |
752 |
if (!periodic[2]) { |
753 |
for (i1=0;i1<N1;i1++) { |
754 |
for (i0=0;i0<N0dom;i0++) { |
755 |
out->Nodes->Tag[i0 + N0dom*i1]+=100; |
756 |
out->Nodes->Tag[i0 + N0dom*i1 + N0dom*N1*(N2-1)]+=200; |
757 |
} |
758 |
} |
759 |
} |
760 |
if (!periodic[1]) { |
761 |
for (i2=0;i2<N2;i2++) { |
762 |
for (i0=0;i0<N0dom;i0++) { |
763 |
out->Nodes->Tag[i0 + i2*N1*N0dom]+=10; |
764 |
out->Nodes->Tag[i0 + (i2+1)*N1*N0dom-N0dom]+=20; |
765 |
} |
766 |
} |
767 |
} |
768 |
if (!periodic[0] && !domInternal ) { |
769 |
for (i2=0;i2<N2;i2++) { |
770 |
for (i1=0;i1<N1;i1++) { |
771 |
if( domLeft ) |
772 |
out->Nodes->Tag[i1*N0dom + i2*N0dom*N1]+=1; |
773 |
if( domRight ) |
774 |
out->Nodes->Tag[(i1+1)*N0dom-1 + i2*N0dom*N1]+=2; |
775 |
} |
776 |
} |
777 |
} |
778 |
/* setup the forward communication data for the boundary nodes that we have just defined */ |
779 |
/* the case where there are 2 subdomains and periodic[0]=true has to be treated |
780 |
as a special case to because the two domains have two interface boundaries to one-another */ |
781 |
indexForward = TMPMEMALLOC( NDOF1*NDOF2, index_t ); |
782 |
if( mpi_info->size>2 || !periodic[0] ){ |
783 |
if( domInternal || domRight || periodicLocal[0] ) |
784 |
{ |
785 |
for( int i=0; i<NDOF2; i++ ) |
786 |
for( int j=0; j<NDOF1; j++ ) |
787 |
indexForward[j+i*NDOF1] = numDOFLocal*j+NDOF1*numDOFLocal*i; |
788 |
targetDomain = mpi_info->rank-1>=0 ? mpi_info->rank-1 : mpi_info->size-1; |
789 |
Finley_NodeDistribution_addForward( out->Nodes->degreeOfFreedomDistribution, targetDomain, NDOF1*NDOF2, indexForward ); |
790 |
} |
791 |
if( domInternal || domLeft || periodicLocal[1] ) |
792 |
{ |
793 |
for( int i=0; i<NDOF2; i++ ) |
794 |
for( int j=0; j<NDOF1; j++ ) |
795 |
indexForward[j+i*NDOF1] = numDOFLocal*(j+1)-1+NDOF1*numDOFLocal*i; |
796 |
targetDomain = (mpi_info->rank+1) % mpi_info->size; |
797 |
Finley_NodeDistribution_addForward( out->Nodes->degreeOfFreedomDistribution, targetDomain, NDOF1*NDOF2, indexForward ); |
798 |
} |
799 |
} |
800 |
else { |
801 |
for( int i=0; i<NDOF2; i++ ) |
802 |
for( int j=0; j<NDOF1; j++ ) |
803 |
indexForward[j+i*NDOF1] = numDOFLocal*(j+1)-1+NDOF1*numDOFLocal*i; |
804 |
targetDomain = (mpi_info->rank+1) % mpi_info->size; |
805 |
Finley_NodeDistribution_addForward( out->Nodes->degreeOfFreedomDistribution, targetDomain, NDOF1*NDOF2, indexForward ); |
806 |
|
807 |
for( int i=0; i<NDOF2; i++ ) |
808 |
for( int j=0; j<NDOF1; j++ ) |
809 |
indexForward[j+i*NDOF1] = numDOFLocal*j+NDOF1*numDOFLocal*i; |
810 |
targetDomain = mpi_info->rank-1>=0 ? mpi_info->rank-1 : mpi_info->size-1; |
811 |
Finley_NodeDistribution_addForward( out->Nodes->degreeOfFreedomDistribution, targetDomain, NDOF1*NDOF2, indexForward ); |
812 |
} |
813 |
|
814 |
/* EXTERNAL NODES */ |
815 |
/* left hand boundary */ |
816 |
DOFcount = NDOF1*NDOF2*numDOFLocal; |
817 |
if( (domLeft && periodic[0]) || !domLeft ) { |
818 |
if( (domLeft && periodic[0]) ) |
819 |
for (i2=0;i2<N2;i2++) { |
820 |
for (i1=0;i1<N1;i1++, k++) { |
821 |
out->Nodes->Coordinates[INDEX2(0,k,3)]=(1.-DBLE(1)/DBLE(N0-1))*Length[0]; |
822 |
out->Nodes->Coordinates[INDEX2(1,k,3)]=DBLE(i1)/DBLE(N1-1)*Length[1]; |
823 |
out->Nodes->Coordinates[INDEX2(2,k,3)]=DBLE(i2)/DBLE(N2-1)*Length[2]; |
824 |
out->Nodes->Id[k]=k; |
825 |
out->Nodes->Tag[k]=0; |
826 |
out->Nodes->degreeOfFreedom[k]=DOFcount+i1%NDOF1+(i2%NDOF2)*NDOF1; |
827 |
} |
828 |
} |
829 |
else |
830 |
for (i2=0;i2<N2;i2++) { |
831 |
for (i1=0;i1<N1;i1++, k++) { |
832 |
out->Nodes->Coordinates[INDEX2(0,k,3)]=(DBLE(firstNode-1)/DBLE(N0-1))*Length[0]; |
833 |
out->Nodes->Coordinates[INDEX2(1,k,3)]=DBLE(i1)/DBLE(N1-1)*Length[1]; |
834 |
out->Nodes->Coordinates[INDEX2(2,k,3)]=DBLE(i2)/DBLE(N2-1)*Length[2]; |
835 |
out->Nodes->Id[k]=k; |
836 |
out->Nodes->Tag[k]=0; |
837 |
out->Nodes->degreeOfFreedom[k]=DOFcount+i1%NDOF1+(i2%NDOF2)*NDOF1; |
838 |
} |
839 |
} |
840 |
DOFcount += NDOF1*NDOF2; |
841 |
targetDomain = mpi_info->rank-1>=0 ? mpi_info->rank-1 : mpi_info->size-1; |
842 |
if( !periodic[1] ){ |
843 |
Finley_NodeDistribution_addBackward( out->Nodes->degreeOfFreedomDistribution, targetDomain, NDOF1*NDOF2, out->Nodes->degreeOfFreedom + (k-NDOF1*NDOF2) ); |
844 |
} |
845 |
else { |
846 |
for( int i=0; i<NDOF2; i++ ) |
847 |
for( int j=0; j<NDOF1; j++ ) |
848 |
indexForward[j+i*NDOF1] = DOFcount - NDOF1*NDOF2 + j + i*NDOF1; |
849 |
Finley_NodeDistribution_addBackward( out->Nodes->degreeOfFreedomDistribution, targetDomain, NDOF1*NDOF2, indexForward ); |
850 |
} |
851 |
|
852 |
/* tag the faces for this special case */ |
853 |
if( !periodic[1] ) |
854 |
{ |
855 |
for( i1=0; i1<N1; i1++ ){ |
856 |
out->Nodes->Tag[k -N1*N2 +i1] += 10; |
857 |
out->Nodes->Tag[k -N1 +i1] += 20; |
858 |
} |
859 |
} |
860 |
if( periodic[2] ) |
861 |
{ |
862 |
for( i2=0; i2<N2; i2++ ){ |
863 |
out->Nodes->Tag[k +(i2-N2)*N1 ] += 100; |
864 |
out->Nodes->Tag[k +(i2-N2+1)*N1 -1] += 200; |
865 |
} |
866 |
} |
867 |
} |
868 |
if( (domRight && periodic[0]) || !domRight ) |
869 |
{ |
870 |
if( domRight && periodic[0] ) |
871 |
for (i2=0;i2<N2;i2++) { |
872 |
for (i1=0;i1<N1;i1++, k++) { |
873 |
out->Nodes->Coordinates[INDEX2(0,k,3)]=Length[0]; |
874 |
out->Nodes->Coordinates[INDEX2(1,k,3)]=DBLE(i1)/DBLE(N1-1)*Length[1]; |
875 |
out->Nodes->Coordinates[INDEX2(2,k,3)]=DBLE(i2)/DBLE(N2-1)*Length[2]; |
876 |
out->Nodes->Id[k]=k; |
877 |
out->Nodes->Tag[k]=0; |
878 |
out->Nodes->degreeOfFreedom[k]=DOFcount+i1%NDOF1+(i2%NDOF2)*NDOF1; |
879 |
} |
880 |
} |
881 |
else |
882 |
for (i2=0;i2<N2;i2++) { |
883 |
for (i1=0;i1<N1;i1++, k++) { |
884 |
out->Nodes->Coordinates[INDEX2(0,k,3)]=DBLE(firstNode+numNodesLocal-periodicLocal[0])/DBLE(N0-1)*Length[0]; |
885 |
out->Nodes->Coordinates[INDEX2(1,k,3)]=DBLE(i1)/DBLE(N1-1)*Length[1]; |
886 |
out->Nodes->Coordinates[INDEX2(2,k,3)]=DBLE(i2)/DBLE(N2-1)*Length[2]; |
887 |
out->Nodes->Id[k]=k; |
888 |
out->Nodes->Tag[k]=0; |
889 |
out->Nodes->degreeOfFreedom[k]=DOFcount+i1%NDOF1+(i2%NDOF2)*NDOF1; |
890 |
} |
891 |
} |
892 |
DOFcount += NDOF1*NDOF2; |
893 |
|
894 |
targetDomain = mpi_info->rank+1 < mpi_info->size? mpi_info->rank+1 : 0; |
895 |
if( !periodic[1] ){ |
896 |
Finley_NodeDistribution_addBackward( out->Nodes->degreeOfFreedomDistribution, targetDomain, NDOF1*NDOF2, out->Nodes->degreeOfFreedom + (k-NDOF1*NDOF2) ); |
897 |
} |
898 |
else { |
899 |
for( int i=0; i<NDOF2; i++ ) |
900 |
for( int j=0; j<NDOF1; j++ ) |
901 |
indexForward[j+i*NDOF1] = DOFcount - NDOF1*NDOF2 + j + i*NDOF1; |
902 |
Finley_NodeDistribution_addBackward( out->Nodes->degreeOfFreedomDistribution, targetDomain, NDOF1*NDOF2, indexForward ); |
903 |
} |
904 |
|
905 |
/* tag the faces for this special case */ |
906 |
if( !periodic[1] ) |
907 |
{ |
908 |
for( i1=0; i1<N1; i1++ ){ |
909 |
out->Nodes->Tag[k -N1*N2 +i1] += 10; |
910 |
out->Nodes->Tag[k -N1 +i1] += 20; |
911 |
} |
912 |
} |
913 |
if( !periodic[2] ) |
914 |
{ |
915 |
for( i2=0; i2<N2; i2++ ){ |
916 |
out->Nodes->Tag[k +(i2-N2)*N1 ] += 100; |
917 |
out->Nodes->Tag[k +(i2-N2+1)*N1 -1] += 200; |
918 |
} |
919 |
} |
920 |
} |
921 |
out->Nodes->degreeOfFreedomDistribution->numInternal = NDOF1*NDOF2*(numDOFLocal - 2 + domRight*(!periodic[0]) + domLeft*(!periodic[0])); |
922 |
out->Nodes->degreeOfFreedomDistribution->numBoundary = out->Nodes->degreeOfFreedomDistribution->numLocal - out->Nodes->degreeOfFreedomDistribution->numInternal; |
923 |
|
924 |
TMPMEMFREE( indexForward ); |
925 |
/* set the elements: */ |
926 |
|
927 |
/* INTERNAL elements */ |
928 |
N0dom = (numNodesLocal-periodicLocal[0]); |
929 |
k = 0; |
930 |
#pragma omp parallel for private(i0,i1,i2,k,node0) |
931 |
for (i2=0;i2<NE2;i2++) { |
932 |
for (i1=0;i1<NE1;i1++) { |
933 |
for (i0=0;i0<numElementsInternal;i0++,k++) { |
934 |
node0=i0+i1*N0dom+N0dom*N1*i2; |
935 |
|
936 |
out->Elements->Id[k]=k; |
937 |
|
938 |
out->Elements->Tag[k]=0; |
939 |
out->Elements->Color[k]=0;//COLOR_MOD(i0)+3*COLOR_MOD(i1)+9*COLOR_MOD(i2);; |
940 |
|
941 |
out->Elements->Nodes[INDEX2(0,k,8)]=node0; |
942 |
out->Elements->Nodes[INDEX2(1,k,8)]=node0+1; |
943 |
out->Elements->Nodes[INDEX2(2,k,8)]=node0+N0dom+1; |
944 |
out->Elements->Nodes[INDEX2(3,k,8)]=node0+N0dom; |
945 |
out->Elements->Nodes[INDEX2(4,k,8)]=node0+N0dom*N1; |
946 |
out->Elements->Nodes[INDEX2(5,k,8)]=node0+N0dom*N1+1; |
947 |
out->Elements->Nodes[INDEX2(6,k,8)]=node0+N0dom*N1+N0dom+1; |
948 |
out->Elements->Nodes[INDEX2(7,k,8)]=node0+N0dom*N1+N0dom; |
949 |
|
950 |
} |
951 |
} |
952 |
} |
953 |
out->Elements->elementDistribution->numInternal = NE1*NE2*numElementsInternal; |
954 |
out->Elements->elementDistribution->numBoundary = 0; |
955 |
|
956 |
/* BOUNDARY Elements */ |
957 |
/* left boundary */ |
958 |
if( !domLeft ) |
959 |
{ |
960 |
for (i2=0;i2<NE2;i2++) { |
961 |
node0 = numNodesLocal*N1*N2 + i2*N1; |
962 |
for (i1=0;i1<NE1;i1++,node0++,k++) { |
963 |
out->Elements->Id[k]=k; |
964 |
out->Elements->Tag[k]=0; |
965 |
out->Elements->Color[k]=0;//COLOR_MOD(i0)+3*COLOR_MOD(i1)+9*COLOR_MOD(i2); |
966 |
|
967 |
out->Elements->Nodes[INDEX2(0,k,8)]=node0; |
968 |
out->Elements->Nodes[INDEX2(1,k,8)]=i1*numNodesLocal + i2*numNodesLocal*N1; |
969 |
out->Elements->Nodes[INDEX2(2,k,8)]=(i1+1)*numNodesLocal + i2*numNodesLocal*N1; |
970 |
out->Elements->Nodes[INDEX2(3,k,8)]=node0+1; |
971 |
out->Elements->Nodes[INDEX2(4,k,8)]=node0+N1; |
972 |
out->Elements->Nodes[INDEX2(5,k,8)]=i1*numNodesLocal + (i2+1)*numNodesLocal*N1; |
973 |
out->Elements->Nodes[INDEX2(6,k,8)]=(i1+1)*numNodesLocal + (i2+1)*numNodesLocal*N1; |
974 |
out->Elements->Nodes[INDEX2(7,k,8)]=node0+N1+1; |
975 |
} |
976 |
} |
977 |
out->Elements->elementDistribution->numBoundary += NE1*NE2; |
978 |
} |
979 |
/* the left periodic boundary is done a little differently to a left internal boundary */ |
980 |
else if( (domLeft && periodic[0]) ) |
981 |
{ |
982 |
for (i2=0;i2<NE2;i2++) { |
983 |
node0 = numDOFLocal*N1*N2 + i2*N1; |
984 |
node1 = node0 + N1*N2; |
985 |
for (i1=0;i1<NE1;i1++,k++,node0++,node1++) { |
986 |
|
987 |
out->Elements->Id[k]=k; |
988 |
out->Elements->Tag[k]=0; |
989 |
out->Elements->Color[k]=0;//COLOR_MOD(i0)+3*COLOR_MOD(i1)+9*COLOR_MOD(i2); |
990 |
|
991 |
out->Elements->Nodes[INDEX2(0,k,8)]=node1; |
992 |
out->Elements->Nodes[INDEX2(1,k,8)]=node0; |
993 |
out->Elements->Nodes[INDEX2(2,k,8)]=node0+1; |
994 |
out->Elements->Nodes[INDEX2(3,k,8)]=node1+1; |
995 |
out->Elements->Nodes[INDEX2(4,k,8)]=node1+N1; |
996 |
out->Elements->Nodes[INDEX2(5,k,8)]=node0+N1; |
997 |
out->Elements->Nodes[INDEX2(6,k,8)]=node0+N1+1; |
998 |
out->Elements->Nodes[INDEX2(7,k,8)]=node1+N1+1; |
999 |
} |
1000 |
} |
1001 |
out->Elements->elementDistribution->numBoundary += NE1*NE2; |
1002 |
} |
1003 |
/* right boundary */ |
1004 |
if( !domRight || (domRight && periodic[0]) ){ |
1005 |
for (i2=0;i2<NE2;i2++) { |
1006 |
for (i1=0;i1<NE1;i1++,node0++,node1+=numDOFLocal,k++) { |
1007 |
node1 = numDOFLocal -1 + numDOFLocal*i1 + N1*numDOFLocal*i2; |
1008 |
node0 = (numNodesLocal + domInternal + periodicLocal[0])*N1*N2 + i2*N1 + i1; |
1009 |
|
1010 |
out->Elements->Id[k]=k; |
1011 |
out->Elements->Tag[k]=0; |
1012 |
out->Elements->Color[k]=0;//COLOR_MOD(i0)+3*COLOR_MOD(i1)+9*COLOR_MOD(i2);; |
1013 |
|
1014 |
out->Elements->Nodes[INDEX2(0,k,8)]=node1; |
1015 |
out->Elements->Nodes[INDEX2(1,k,8)]=node0; |
1016 |
out->Elements->Nodes[INDEX2(2,k,8)]=node0+1; |
1017 |
out->Elements->Nodes[INDEX2(3,k,8)]=node1+N0dom; |
1018 |
out->Elements->Nodes[INDEX2(4,k,8)]=node1+N0dom*N1; |
1019 |
out->Elements->Nodes[INDEX2(5,k,8)]=node0+N1; |
1020 |
out->Elements->Nodes[INDEX2(6,k,8)]=node0+N1+1; |
1021 |
out->Elements->Nodes[INDEX2(7,k,8)]=node1+N0dom*N1+N0dom; |
1022 |
} |
1023 |
} |
1024 |
out->Elements->elementDistribution->numBoundary += NE1*NE2; |
1025 |
} |
1026 |
|
1027 |
out->Elements->minColor=0; |
1028 |
out->Elements->maxColor=0;//COLOR_MOD(0)+3*COLOR_MOD(0)+9*COLOR_MOD(0); |
1029 |
out->Elements->elementDistribution->numLocal = out->Elements->elementDistribution->numInternal + out->Elements->elementDistribution->numBoundary; |
1030 |
|
1031 |
/* face elements: */ |
1032 |
|
1033 |
if (useElementsOnFace) { |
1034 |
NUMNODES=8; |
1035 |
} else { |
1036 |
NUMNODES=4; |
1037 |
} |
1038 |
totalNECount=k; |
1039 |
faceNECount=0; |
1040 |
idCount = totalNECount; |
1041 |
|
1042 |
/* Do internal face elements for each boundary face first */ |
1043 |
/* these are the quadrilateral elements on boundary 1 (x3=0): */ |
1044 |
numElementsInternal = numElementsLocal-nodesExternal[0]-nodesExternal[1]; |
1045 |
if (!periodic[2]) { |
1046 |
/* elements on boundary 100 (x3=0): */ |
1047 |
|
1048 |
#pragma omp parallel for private(i0,i1,k,node0) |
1049 |
for (i1=0;i1<NE1;i1++) { |
1050 |
for (i0=0; i0<numElementsInternal; i0++) { |
1051 |
k=i0+numElementsInternal*i1+faceNECount; |
1052 |
node0=i0+i1*numDOFLocal; |
1053 |
|
1054 |
out->FaceElements->Id[k]=idCount++; |
1055 |
out->FaceElements->Tag[k]=100; |
1056 |
out->FaceElements->Color[k]=0;//(i0%2)+2*(i1%2); |
1057 |
|
1058 |
if (useElementsOnFace) { |
1059 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1060 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal; |
1061 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numDOFLocal+1; |
1062 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+1; |
1063 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0+numDOFLocal*N1; |
1064 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal; |
1065 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal+1; |
1066 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+numDOFLocal*N1+1; |
1067 |
} else { |
1068 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1069 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal; |
1070 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numDOFLocal+1; |
1071 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+1; |
1072 |
} |
1073 |
} |
1074 |
} |
1075 |
totalNECount+=NE1*numElementsInternal; |
1076 |
faceNECount+=NE1*numElementsInternal; |
1077 |
|
1078 |
/* ** elements on boundary 200 (x3=1) */ |
1079 |
|
1080 |
#pragma omp parallel for private(i0,i1,k,node0) |
1081 |
for (i1=0;i1<NE1;i1++) { |
1082 |
for (i0=0;i0<numElementsInternal;i0++) { |
1083 |
k=i0+numElementsInternal*i1+faceNECount; |
1084 |
node0=i0+i1*numDOFLocal+numDOFLocal*N1*(NE2-1); |
1085 |
|
1086 |
out->FaceElements->Id[k]=idCount++; |
1087 |
out->FaceElements->Tag[k]=200; |
1088 |
out->FaceElements->Color[k]=0;//(i0%2)+2*(i1%2)+4; |
1089 |
|
1090 |
if (useElementsOnFace) { |
1091 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+ numDOFLocal * N1; |
1092 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+ numDOFLocal * N1+1; |
1093 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+ numDOFLocal * N1+numDOFLocal+1; |
1094 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+ numDOFLocal * N1+numDOFLocal; |
1095 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0; |
1096 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+1; |
1097 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+numDOFLocal+1; |
1098 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+numDOFLocal; |
1099 |
} else { |
1100 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+ numDOFLocal * N1; |
1101 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+ numDOFLocal * N1+1; |
1102 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+ numDOFLocal * N1+numDOFLocal+1; |
1103 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+ numDOFLocal * N1+numDOFLocal; |
1104 |
} |
1105 |
} |
1106 |
} |
1107 |
totalNECount+=NE1*numElementsInternal; |
1108 |
faceNECount+=NE1*numElementsInternal; |
1109 |
} |
1110 |
if (!periodic[0] && !domInternal) { |
1111 |
/* ** elements on boundary 001 (x1=0): */ |
1112 |
if( domLeft ){ |
1113 |
#pragma omp parallel for private(i1,i2,k,node0) |
1114 |
for (i2=0;i2<NE2;i2++) { |
1115 |
for (i1=0;i1<NE1;i1++) { |
1116 |
k=i1+NE1*i2+faceNECount; |
1117 |
node0=i1*numDOFLocal+numDOFLocal*N1*i2; |
1118 |
|
1119 |
out->FaceElements->Id[k]=idCount++; |
1120 |
out->FaceElements->Tag[k]=1; |
1121 |
out->FaceElements->Color[k]=0; //(i2%2)+2*(i1%2)+8; |
1122 |
|
1123 |
if (useElementsOnFace) { |
1124 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1125 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal*N1; |
1126 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal; |
1127 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numDOFLocal; |
1128 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0+1; |
1129 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+numDOFLocal*N1+1; |
1130 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal+1; |
1131 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+numDOFLocal+1; |
1132 |
} else { |
1133 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1134 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal*N1; |
1135 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal; |
1136 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numDOFLocal; |
1137 |
} |
1138 |
} |
1139 |
} |
1140 |
totalNECount+=NE1*NE2; |
1141 |
faceNECount+=NE1*NE2; |
1142 |
} |
1143 |
/* ** elements on boundary 002 (x1=1): */ |
1144 |
if( domRight ) { |
1145 |
#pragma omp parallel for private(i1,i2,k,node0) |
1146 |
for (i2=0;i2<NE2;i2++) { |
1147 |
for (i1=0;i1<NE1;i1++) { |
1148 |
k=i1+NE1*i2+faceNECount; |
1149 |
node0=(numDOFLocal-2)+i1*numDOFLocal+numDOFLocal*N1*i2 ; |
1150 |
|
1151 |
out->FaceElements->Id[k]=idCount++; |
1152 |
out->FaceElements->Tag[k]=2; |
1153 |
out->FaceElements->Color[k]=0;//(i2%2)+2*(i1%2)+12; |
1154 |
|
1155 |
if (useElementsOnFace) { |
1156 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+1; |
1157 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal+1; |
1158 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal+1; |
1159 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numDOFLocal*N1+1; |
1160 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0; |
1161 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+numDOFLocal; |
1162 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal; |
1163 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+numDOFLocal*N1; |
1164 |
} else { |
1165 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+1; |
1166 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal+1; |
1167 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal+1; |
1168 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numDOFLocal*N1+1; |
1169 |
} |
1170 |
} |
1171 |
} |
1172 |
totalNECount+=NE1*NE2; |
1173 |
faceNECount+=NE1*NE2; |
1174 |
} |
1175 |
} |
1176 |
if (!periodic[1]) { |
1177 |
/* ** elements on boundary 010 (x2=0): */ |
1178 |
|
1179 |
#pragma omp parallel for private(i0,i2,k,node0) |
1180 |
for (i2=0;i2<NE2;i2++) { |
1181 |
for (i0=0;i0<numElementsInternal;i0++) { |
1182 |
k=i0+numElementsInternal*i2+faceNECount; |
1183 |
node0=i0+numDOFLocal*N1*i2; |
1184 |
|
1185 |
out->FaceElements->Id[k]=idCount++; |
1186 |
out->FaceElements->Tag[k]=10; |
1187 |
out->FaceElements->Color[k]=0;//(i0%2)+2*(i2%2)+16; |
1188 |
|
1189 |
if (useElementsOnFace) { |
1190 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1191 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+1; |
1192 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1*numDOFLocal+1; |
1193 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N1*numDOFLocal; |
1194 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0+numDOFLocal; |
1195 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+numDOFLocal+1; |
1196 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N1*numDOFLocal+numDOFLocal+1; |
1197 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+N1*numDOFLocal+numDOFLocal; |
1198 |
} else { |
1199 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1200 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+1; |
1201 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1*numDOFLocal+1; |
1202 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N1*numDOFLocal; |
1203 |
} |
1204 |
} |
1205 |
} |
1206 |
totalNECount+=numElementsInternal*NE2; |
1207 |
faceNECount+=numElementsInternal*NE2; |
1208 |
|
1209 |
/* ** elements on boundary 020 (x2=1): */ |
1210 |
|
1211 |
#pragma omp parallel for private(i0,i2,k,node0) |
1212 |
for (i2=0;i2<NE2;i2++) { |
1213 |
for (i0=0;i0<numElementsInternal;i0++) { |
1214 |
k=i0+numElementsInternal*i2+faceNECount; |
1215 |
node0=i0+(NE1-1)*numDOFLocal+numDOFLocal*N1*i2; |
1216 |
|
1217 |
out->FaceElements->Tag[k]=20; |
1218 |
out->FaceElements->Id[k]=idCount++; |
1219 |
out->FaceElements->Color[k]=(i0%2)+2*(i2%2)+20; |
1220 |
|
1221 |
if (useElementsOnFace) { |
1222 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+numDOFLocal; |
1223 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal; |
1224 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal+1; |
1225 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numDOFLocal+1; |
1226 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0; |
1227 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+numDOFLocal*N1; |
1228 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+numDOFLocal*N1+1; |
1229 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+1; |
1230 |
} else { |
1231 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+numDOFLocal; |
1232 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal; |
1233 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal+1; |
1234 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numDOFLocal+1; |
1235 |
} |
1236 |
|
1237 |
} |
1238 |
} |
1239 |
totalNECount+=numElementsInternal*NE2; |
1240 |
faceNECount+=numElementsInternal*NE2; |
1241 |
} |
1242 |
out->FaceElements->elementDistribution->numInternal = faceNECount; |
1243 |
|
1244 |
/* now do the boundary face elements */ |
1245 |
/* LHS */ |
1246 |
if( !domLeft ) |
1247 |
{ |
1248 |
if( !periodic[2] ) { |
1249 |
|
1250 |
/* x3=0 */ |
1251 |
for( i1=0; i1<NE1; i1++ ) |
1252 |
{ |
1253 |
k = i1+faceNECount; |
1254 |
node0 = i1*numNodesLocal; |
1255 |
node1 = numNodesLocal*N1*N2 + i1; |
1256 |
|
1257 |
out->FaceElements->Tag[k]=200; |
1258 |
out->FaceElements->Id[k]=idCount++; |
1259 |
out->FaceElements->Color[k]=0; |
1260 |
|
1261 |
if( useElementsOnFace ) |
1262 |
{ |
1263 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1; |
1264 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+1; |
1265 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numNodesLocal; |
1266 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0; |
1267 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node1+N1; |
1268 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node1+N1+1; |
1269 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+numNodesLocal*N1+numNodesLocal; |
1270 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+numNodesLocal*N1; |
1271 |
} else { |
1272 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1; |
1273 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+1; |
1274 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numNodesLocal; |
1275 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0; |
1276 |
} |
1277 |
} |
1278 |
faceNECount += NE1; |
1279 |
totalNECount += NE1; |
1280 |
|
1281 |
/* x3=1 */ |
1282 |
for( i1=0; i1<NE1; i1++ ) |
1283 |
{ |
1284 |
k = i1+faceNECount; |
1285 |
node0 = numNodesLocal*N1*(NE2-1) + i1*numNodesLocal; |
1286 |
node1 = numNodesLocal*N1*N2 + i1 + (NE2-1)*N1; |
1287 |
|
1288 |
out->FaceElements->Tag[k]=200; |
1289 |
out->FaceElements->Id[k]=idCount++; |
1290 |
out->FaceElements->Color[k]=0; |
1291 |
|
1292 |
if( useElementsOnFace ) |
1293 |
{ |
1294 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1+N1; |
1295 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numNodesLocal*N1; |
1296 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numNodesLocal*N1+numNodesLocal; |
1297 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+N1+1; |
1298 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node1; |
1299 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0; |
1300 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+numNodesLocal; |
1301 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node1+1; |
1302 |
} else { |
1303 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1+N1; |
1304 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numNodesLocal*N1; |
1305 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numNodesLocal*N1+numNodesLocal; |
1306 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+N1+1; |
1307 |
} |
1308 |
} |
1309 |
faceNECount += NE1; |
1310 |
totalNECount += NE1; |
1311 |
} |
1312 |
|
1313 |
if( !periodic[1] ) { |
1314 |
/* x2=0 */ |
1315 |
for( i2=0; i2<NE2; i2++ ) |
1316 |
{ |
1317 |
k = i2+faceNECount; |
1318 |
node0 = i2*numNodesLocal*N1; |
1319 |
node1 = numNodesLocal*N1*N2 + i2*N1; |
1320 |
|
1321 |
out->FaceElements->Tag[k]=20; |
1322 |
out->FaceElements->Id[k]=idCount++; |
1323 |
out->FaceElements->Color[k]=0; |
1324 |
|
1325 |
if( useElementsOnFace ) |
1326 |
{ |
1327 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1; |
1328 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0; |
1329 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numNodesLocal*N1; |
1330 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+N1; |
1331 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node1+1; |
1332 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+numNodesLocal; |
1333 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+numNodesLocal*N1+numNodesLocal; |
1334 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node1+N1+1; |
1335 |
} else { |
1336 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1; |
1337 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0; |
1338 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numNodesLocal*N1; |
1339 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+N1; |
1340 |
} |
1341 |
} |
1342 |
faceNECount += NE2; |
1343 |
totalNECount += NE2; |
1344 |
|
1345 |
/* x2=1 */ |
1346 |
for( i2=0; i2<NE2; i2++ ) |
1347 |
{ |
1348 |
k = i2+faceNECount; |
1349 |
node0 = i2*numNodesLocal*N1 + numNodesLocal*(NE1-1); |
1350 |
node1 = numNodesLocal*N1*N2 + i2*N1 + (NE1-1); |
1351 |
|
1352 |
out->FaceElements->Tag[k]=20; |
1353 |
out->FaceElements->Id[k]=idCount++; |
1354 |
out->FaceElements->Color[k]=0; |
1355 |
|
1356 |
if( useElementsOnFace ) |
1357 |
{ |
1358 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node1; |
1359 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0; |
1360 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+numNodesLocal*N1; |
1361 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node1+N1; |
1362 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1+1; |
1363 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numNodesLocal; |
1364 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numNodesLocal*N1+numNodesLocal; |
1365 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+N1+1; |
1366 |
} else { |
1367 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1+1; |
1368 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numNodesLocal; |
1369 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+numNodesLocal*N1+numNodesLocal; |
1370 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+N1+1; |
1371 |
} |
1372 |
} |
1373 |
faceNECount += NE2; |
1374 |
totalNECount += NE2; |
1375 |
} |
1376 |
} |
1377 |
|
1378 |
/* RHS */ |
1379 |
if( !domRight || periodicLocal[1] ) |
1380 |
{ |
1381 |
/* the case of left hand boundary domain and periodic boundary condition on its left hand boundary */ |
1382 |
if( domLeft && periodic[0] ){ |
1383 |
if( !periodic[2] ) { |
1384 |
|
1385 |
/* x3=0 */ |
1386 |
for( i1=0; i1<NE1; i1++ ) |
1387 |
{ |
1388 |
k = i1+faceNECount; |
1389 |
node0 = numDOFLocal*N1*N2 + i1; |
1390 |
node1 = numNodesLocal*N1*N2 + i1; |
1391 |
|
1392 |
out->FaceElements->Tag[k]=200; |
1393 |
out->FaceElements->Id[k]=idCount++; |
1394 |
out->FaceElements->Color[k]=0; |
1395 |
|
1396 |
if( useElementsOnFace ) |
1397 |
{ |
1398 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1; |
1399 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+1; |
1400 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+1; |
1401 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0; |
1402 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node1+N1; |
1403 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node1+N1+1; |
1404 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N1+1; |
1405 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+N1; |
1406 |
} else { |
1407 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1; |
1408 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+1; |
1409 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+1; |
1410 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0; |
1411 |
} |
1412 |
} |
1413 |
faceNECount += NE1; |
1414 |
totalNECount += NE1; |
1415 |
|
1416 |
/* x3=1 */ |
1417 |
for( i1=0; i1<NE1; i1++ ) |
1418 |
{ |
1419 |
k = i1+faceNECount; |
1420 |
node0 = numDOFLocal*N1*N2 + i1 + (NE2-1)*N1; |
1421 |
node1 = numNodesLocal*N1*N2 + i1 + (NE2-1)*N1; |
1422 |
|
1423 |
out->FaceElements->Tag[k]=200; |
1424 |
out->FaceElements->Id[k]=idCount++; |
1425 |
out->FaceElements->Color[k]=0; |
1426 |
|
1427 |
if( useElementsOnFace ) |
1428 |
{ |
1429 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node1; |
1430 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node1+1; |
1431 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+1; |
1432 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0; |
1433 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1+N1; |
1434 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+N1+1; |
1435 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1+1; |
1436 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N1; |
1437 |
} else { |
1438 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1+N1; |
1439 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+N1+1; |
1440 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1+1; |
1441 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N1; |
1442 |
} |
1443 |
} |
1444 |
faceNECount += NE1; |
1445 |
totalNECount += NE1; |
1446 |
} |
1447 |
|
1448 |
if( !periodic[1] ) { |
1449 |
/* x2=0 */ |
1450 |
for( i2=0; i2<NE2; i2++ ) |
1451 |
{ |
1452 |
k = i2+faceNECount; |
1453 |
node0 = numDOFLocal*N1*N2 + i2*N1; |
1454 |
node1 = numNodesLocal*N1*N2 + i2*N1; |
1455 |
|
1456 |
out->FaceElements->Tag[k]=20; |
1457 |
out->FaceElements->Id[k]=idCount++; |
1458 |
out->FaceElements->Color[k]=0; |
1459 |
|
1460 |
if( useElementsOnFace ) |
1461 |
{ |
1462 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1; |
1463 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0; |
1464 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1; |
1465 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+N1; |
1466 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node1+1; |
1467 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+1; |
1468 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N1+1; |
1469 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node1+N1+1; |
1470 |
} else { |
1471 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1; |
1472 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0; |
1473 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1; |
1474 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+N1; |
1475 |
} |
1476 |
} |
1477 |
faceNECount += NE2; |
1478 |
totalNECount += NE2; |
1479 |
|
1480 |
/* x2=1 */ |
1481 |
for( i2=0; i2<NE2; i2++ ) |
1482 |
{ |
1483 |
k = i2+faceNECount; |
1484 |
node0 = numDOFLocal*N1*N2 + i2*N1 + N1-2; |
1485 |
node1 = numNodesLocal*N1*N2 + i2*N1 + N1-2; |
1486 |
|
1487 |
out->FaceElements->Tag[k]=20; |
1488 |
out->FaceElements->Id[k]=idCount++; |
1489 |
out->FaceElements->Color[k]=0; |
1490 |
|
1491 |
if( useElementsOnFace ) |
1492 |
{ |
1493 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node1; |
1494 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0; |
1495 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node0+N1; |
1496 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node1+N1; |
1497 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1+1; |
1498 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+1; |
1499 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1+1; |
1500 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+N1+1; |
1501 |
} else { |
1502 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node1+1; |
1503 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+1; |
1504 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node0+N1+1; |
1505 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+N1+1; |
1506 |
} |
1507 |
} |
1508 |
faceNECount += NE2; |
1509 |
totalNECount += NE2; |
1510 |
} |
1511 |
|
1512 |
} |
1513 |
if( !periodic[2] ) { |
1514 |
/* x3=0 */ |
1515 |
for( i1=0; i1<NE1; i1++ ) |
1516 |
{ |
1517 |
k = i1+faceNECount; |
1518 |
node0 = numDOFLocal*(i1+1) - 1; |
1519 |
node1 = (numNodesLocal+periodicLocal[0]+periodicLocal[1])*N1*N2 + i1 + domInternal*N1*N2; |
1520 |
|
1521 |
out->FaceElements->Tag[k]=200; |
1522 |
out->FaceElements->Id[k]=idCount++; |
1523 |
out->FaceElements->Color[k]=0; |
1524 |
|
1525 |
if( useElementsOnFace ) |
1526 |
{ |
1527 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1528 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal; |
1529 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node1+1; |
1530 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1; |
1531 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0+numDOFLocal*N1; |
1532 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal; |
1533 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node1+N1+1; |
1534 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node1+N1; |
1535 |
} else { |
1536 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1537 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+numDOFLocal; |
1538 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node1+1; |
1539 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1; |
1540 |
} |
1541 |
} |
1542 |
faceNECount += NE1; |
1543 |
totalNECount += NE1; |
1544 |
|
1545 |
/* x3=1 */ |
1546 |
for( i1=0; i1<NE1; i1++ ) |
1547 |
{ |
1548 |
k = i1+faceNECount; |
1549 |
node0 = numDOFLocal*N1*(NE2-1) + (i1+1)*numDOFLocal - 1; |
1550 |
node1 = numNodesLocal*N1*N2 + i1 + (NE2-1)*N1 + (domInternal+periodicLocal[1]+periodicLocal[0])*N1*N2; |
1551 |
|
1552 |
out->FaceElements->Tag[k]=200; |
1553 |
out->FaceElements->Id[k]=idCount++; |
1554 |
out->FaceElements->Color[k]=0; |
1555 |
|
1556 |
if( useElementsOnFace ) |
1557 |
{ |
1558 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0; |
1559 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+numDOFLocal; |
1560 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node1+1; |
1561 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node1; |
1562 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+numDOFLocal*N1; |
1563 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal; |
1564 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node1+N1+1; |
1565 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+N1; |
1566 |
} else { |
1567 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+numDOFLocal*N1; |
1568 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+numDOFLocal*N1+numDOFLocal; |
1569 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node1+N1+1; |
1570 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1+N1; |
1571 |
} |
1572 |
} |
1573 |
faceNECount += NE1; |
1574 |
totalNECount += NE1; |
1575 |
} |
1576 |
if( !periodic[1] ) { |
1577 |
/* x2=0 */ |
1578 |
for( i2=0; i2<NE2; i2++ ) |
1579 |
{ |
1580 |
k = i2+faceNECount; |
1581 |
node0 = N1*numDOFLocal*i2 + numDOFLocal - 1; |
1582 |
node1 = numNodesLocal*N1*N2 + i2*N1 + (domInternal+periodicLocal[0]+periodicLocal[1])*N1*N2; |
1583 |
|
1584 |
out->FaceElements->Tag[k]=20; |
1585 |
out->FaceElements->Id[k]=idCount++; |
1586 |
out->FaceElements->Color[k]=0; |
1587 |
|
1588 |
if( useElementsOnFace ) |
1589 |
{ |
1590 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1591 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1; |
1592 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node1+N1; |
1593 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N1*numDOFLocal; |
1594 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0+numDOFLocal; |
1595 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node1+1; |
1596 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node1+N1+1; |
1597 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node0+N1*numDOFLocal+numDOFLocal; |
1598 |
} else { |
1599 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0; |
1600 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node1; |
1601 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node1+N1; |
1602 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node0+N1*numDOFLocal; |
1603 |
} |
1604 |
} |
1605 |
faceNECount += NE2; |
1606 |
totalNECount += NE2; |
1607 |
|
1608 |
/* x2=1 */ |
1609 |
for( i2=0; i2<NE2; i2++ ) |
1610 |
{ |
1611 |
k = i2+faceNECount; |
1612 |
node0 = numDOFLocal*N1*i2 + NE1*numDOFLocal - 1; |
1613 |
node1 = numNodesLocal*N1*N2 + i2*N1 + (NE1-1) + (domInternal+periodicLocal[0]+periodicLocal[1])*N1*N2; |
1614 |
|
1615 |
out->FaceElements->Tag[k]=20; |
1616 |
out->FaceElements->Id[k]=idCount++; |
1617 |
out->FaceElements->Color[k]=0; |
1618 |
|
1619 |
if( useElementsOnFace ){ |
1620 |
out->FaceElements->Nodes[INDEX2(4,k,NUMNODES)]=node0; |
1621 |
out->FaceElements->Nodes[INDEX2(7,k,NUMNODES)]=node1; |
1622 |
out->FaceElements->Nodes[INDEX2(6,k,NUMNODES)]=node1+N1; |
1623 |
out->FaceElements->Nodes[INDEX2(5,k,NUMNODES)]=node0+N1*numDOFLocal; |
1624 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+numDOFLocal; |
1625 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+1; |
1626 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node1+N1+1; |
1627 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N1*numDOFLocal+numDOFLocal; |
1628 |
} else { |
1629 |
out->FaceElements->Nodes[INDEX2(0,k,NUMNODES)]=node0+numDOFLocal; |
1630 |
out->FaceElements->Nodes[INDEX2(3,k,NUMNODES)]=node1+1; |
1631 |
out->FaceElements->Nodes[INDEX2(2,k,NUMNODES)]=node1+N1+1; |
1632 |
out->FaceElements->Nodes[INDEX2(1,k,NUMNODES)]=node0+N1*numDOFLocal+numDOFLocal; |
1633 |
} |
1634 |
} |
1635 |
faceNECount += NE2; |
1636 |
totalNECount += NE2; |
1637 |
} |
1638 |
} |
1639 |
out->FaceElements->minColor=0; |
1640 |
out->FaceElements->maxColor=0;//23; |
1641 |
|
1642 |
out->FaceElements->elementDistribution->numBoundary = faceNECount - out->FaceElements->elementDistribution->numInternal; |
1643 |
out->FaceElements->elementDistribution->numLocal = faceNECount; |
1644 |
|
1645 |
|
1646 |
/* setup distribution info for other elements */ |
1647 |
out->ContactElements->elementDistribution->numLocal = out->ContactElements->elementDistribution->numInternal = out->ContactElements->elementDistribution->numInternal = 0; |
1648 |
out->Points->elementDistribution->numLocal = out->Points->elementDistribution->numInternal = out->Points->elementDistribution->numInternal = 0; |
1649 |
|
1650 |
/* condense the nodes: */ |
1651 |
Finley_Mesh_resolveNodeIds( out ); |
1652 |
|
1653 |
/* setup the CommBuffer */ |
1654 |
Finley_NodeDistribution_formCommBuffer( out->Nodes->degreeOfFreedomDistribution, out->Nodes->CommBuffer ); |
1655 |
if ( !Finley_MPI_noError( mpi_info )) { |
1656 |
if( Finley_noError() ) |
1657 |
Finley_setError( PASO_MPI_ERROR, "Error on another MPI process" ); |
1658 |
Paso_MPIInfo_dealloc( mpi_info ); |
1659 |
Finley_Mesh_dealloc(out); |
1660 |
return NULL; |
1661 |
} |
1662 |
|
1663 |
Finley_NodeDistribution_calculateIndexExternal( out->Nodes->degreeOfFreedomDistribution, out->Nodes->CommBuffer ); |
1664 |
|
1665 |
/* prepare mesh for further calculatuions:*/ |
1666 |
Finley_Mesh_prepare(out) ; |
1667 |
|
1668 |
// print_mesh_statistics( out ); |
1669 |
|
1670 |
#ifdef Finley_TRACE |
1671 |
printf("timing: mesh generation: %.4e sec\n",Finley_timer()-time0); |
1672 |
#endif |
1673 |
|
1674 |
if (! Finley_noError()) { |
1675 |
Finley_Mesh_dealloc(out); |
1676 |
return NULL; |
1677 |
} |
1678 |
|
1679 |
return out; |
1680 |
} |
1681 |
#endif |
1682 |
|