1 |
|
2 |
/* $Id$ */ |
3 |
|
4 |
/******************************************************* |
5 |
* |
6 |
* Copyright 2003-2007 by ACceSS MNRF |
7 |
* Copyright 2007 by University of Queensland |
8 |
* |
9 |
* http://esscc.uq.edu.au |
10 |
* Primary Business: Queensland, Australia |
11 |
* Licensed under the Open Software License version 3.0 |
12 |
* http://www.opensource.org/licenses/osl-3.0.php |
13 |
* |
14 |
*******************************************************/ |
15 |
|
16 |
/**************************************************************/ |
17 |
|
18 |
/* Finley: generates rectangular meshes */ |
19 |
|
20 |
/* Generates a numElements[0] x numElements[1] mesh with second order elements (Rec8) in the rectangle */ |
21 |
/* [0,Length[0]] x [0,Length[1]]. order is the desired accuracy of the integration scheme. */ |
22 |
|
23 |
/**************************************************************/ |
24 |
|
25 |
#include "RectangularMesh.h" |
26 |
|
27 |
|
28 |
Finley_Mesh* Finley_RectangularMesh_Rec8(dim_t* numElements, |
29 |
double* Length, |
30 |
bool_t* periodic, |
31 |
index_t order, |
32 |
index_t reduced_order, |
33 |
bool_t useElementsOnFace, |
34 |
bool_t useFullElementOrder, |
35 |
bool_t optimize) |
36 |
{ |
37 |
#define N_PER_E 2 |
38 |
#define DIM 2 |
39 |
dim_t N0,N1,NE0,NE1,i0,i1,k,Nstride0,Nstride1; |
40 |
dim_t totalNECount,faceNECount,NDOF0,NDOF1,NFaceElements,NN, local_NE0, local_NE1, local_N0, local_N1; |
41 |
index_t e_offset1, e_offset0, offset0, offset1, global_i0, global_i1; |
42 |
index_t node0, myRank; |
43 |
Finley_Mesh* out; |
44 |
Paso_MPIInfo *mpi_info = NULL; |
45 |
char name[50]; |
46 |
double time0=Finley_timer(); |
47 |
|
48 |
/* get MPI information */ |
49 |
mpi_info = Paso_MPIInfo_alloc( MPI_COMM_WORLD ); |
50 |
if (! Finley_noError()) { |
51 |
return NULL; |
52 |
} |
53 |
myRank=mpi_info->rank; |
54 |
|
55 |
/* set up the global dimensions of the mesh */ |
56 |
|
57 |
NE0=MAX(1,numElements[0]); |
58 |
NE1=MAX(1,numElements[1]); |
59 |
N0=N_PER_E*NE0+1; |
60 |
N1=N_PER_E*NE1+1; |
61 |
|
62 |
/* allocate mesh: */ |
63 |
sprintf(name,"Rectangular %d x %d mesh",N0,N1); |
64 |
out=Finley_Mesh_alloc(name,DIM,order, reduced_order, mpi_info); |
65 |
if (! Finley_noError()) { |
66 |
Paso_MPIInfo_free( mpi_info ); |
67 |
return NULL; |
68 |
} |
69 |
|
70 |
if (useFullElementOrder) { |
71 |
Finley_Mesh_setElements(out,Finley_ElementFile_alloc(Rec9, |
72 |
out->order, |
73 |
out->reduced_order, |
74 |
mpi_info)); |
75 |
if (useElementsOnFace) { |
76 |
Finley_setError(SYSTEM_ERROR,"rich elements for Rec9 elements is not supported yet."); |
77 |
} else { |
78 |
Finley_Mesh_setFaceElements(out,Finley_ElementFile_alloc(Line3, |
79 |
out->order, |
80 |
out->reduced_order, |
81 |
mpi_info)); |
82 |
Finley_Mesh_setContactElements(out,Finley_ElementFile_alloc(Line3_Contact, |
83 |
out->order, |
84 |
out->reduced_order, |
85 |
mpi_info)); |
86 |
} |
87 |
} else { |
88 |
Finley_Mesh_setElements(out,Finley_ElementFile_alloc(Rec8,out->order,out->reduced_order,mpi_info)); |
89 |
if (useElementsOnFace) { |
90 |
Finley_Mesh_setFaceElements(out,Finley_ElementFile_alloc(Rec8Face, |
91 |
out->order, |
92 |
out->reduced_order, |
93 |
mpi_info)); |
94 |
Finley_Mesh_setContactElements(out,Finley_ElementFile_alloc(Rec8Face_Contact, |
95 |
out->order, |
96 |
out->reduced_order, |
97 |
mpi_info)); |
98 |
} else { |
99 |
Finley_Mesh_setFaceElements(out,Finley_ElementFile_alloc(Line3, |
100 |
out->order, |
101 |
out->reduced_order, |
102 |
mpi_info)); |
103 |
Finley_Mesh_setContactElements(out,Finley_ElementFile_alloc(Line3_Contact, |
104 |
out->order, |
105 |
out->reduced_order, |
106 |
mpi_info)); |
107 |
} |
108 |
} |
109 |
Finley_Mesh_setPoints(out,Finley_ElementFile_alloc(Point1, |
110 |
out->order, |
111 |
out->reduced_order, |
112 |
mpi_info)); |
113 |
if (! Finley_noError()) { |
114 |
Paso_MPIInfo_free( mpi_info ); |
115 |
Finley_Mesh_free(out); |
116 |
return NULL; |
117 |
} |
118 |
|
119 |
/* work out the largest dimension */ |
120 |
if (N1==MAX(N0,N1)) { |
121 |
Nstride0=1; |
122 |
Nstride1=N0; |
123 |
local_NE0=NE0; |
124 |
e_offset0=0; |
125 |
Paso_MPIInfo_Split(mpi_info,NE1,&local_NE1,&e_offset1); |
126 |
} else { |
127 |
Nstride0=N1; |
128 |
Nstride1=1; |
129 |
Paso_MPIInfo_Split(mpi_info,NE0,&local_NE0,&e_offset0); |
130 |
local_NE1=NE1; |
131 |
e_offset1=0; |
132 |
} |
133 |
offset0=e_offset0*N_PER_E; |
134 |
offset1=e_offset1*N_PER_E; |
135 |
local_N0=local_NE0>0 ? local_NE0*N_PER_E+1 : 0; |
136 |
local_N1=local_NE1>0 ? local_NE1*N_PER_E+1 : 0; |
137 |
|
138 |
/* get the number of surface elements */ |
139 |
|
140 |
NFaceElements=0; |
141 |
if (!periodic[0] && (local_NE0>0)) { |
142 |
NDOF0=N0; |
143 |
if (e_offset0 == 0) NFaceElements+=local_NE1; |
144 |
if (local_NE0+e_offset0 == NE0) NFaceElements+=local_NE1; |
145 |
} else { |
146 |
NDOF0=N0-1; |
147 |
} |
148 |
if (!periodic[1] && (local_NE1>0)) { |
149 |
NDOF1=N1; |
150 |
if (e_offset1 == 0) NFaceElements+=local_NE0; |
151 |
if (local_NE1+e_offset1 == NE1) NFaceElements+=local_NE0; |
152 |
} else { |
153 |
NDOF1=N1-1; |
154 |
} |
155 |
|
156 |
/* allocate tables: */ |
157 |
|
158 |
Finley_NodeFile_allocTable(out->Nodes,local_N0*local_N1); |
159 |
Finley_ElementFile_allocTable(out->Elements,local_NE0*local_NE1); |
160 |
Finley_ElementFile_allocTable(out->FaceElements,NFaceElements); |
161 |
|
162 |
if (Finley_noError()) { |
163 |
/* create nodes */ |
164 |
|
165 |
#pragma omp parallel for private(i0,i1,k,global_i0,global_i1) |
166 |
for (i1=0;i1<local_N1;i1++) { |
167 |
for (i0=0;i0<local_N0;i0++) { |
168 |
k=i0+local_N0*i1; |
169 |
global_i0=i0+offset0; |
170 |
global_i1=i1+offset1; |
171 |
out->Nodes->Coordinates[INDEX2(0,k,DIM)]=DBLE(global_i0)/DBLE(N0-1)*Length[0]; |
172 |
out->Nodes->Coordinates[INDEX2(1,k,DIM)]=DBLE(global_i1)/DBLE(N1-1)*Length[1]; |
173 |
out->Nodes->Id[k]=Nstride0*global_i0+Nstride1*global_i1; |
174 |
out->Nodes->Tag[k]=0; |
175 |
out->Nodes->globalDegreesOfFreedom[k]=Nstride0*(global_i0%NDOF0) |
176 |
+Nstride1*(global_i1%NDOF1); |
177 |
} |
178 |
} |
179 |
/* set the elements: */ |
180 |
NN=out->Elements->numNodes; |
181 |
#pragma omp parallel for private(i0,i1,k,node0) |
182 |
for (i1=0;i1<local_NE1;i1++) { |
183 |
for (i0=0;i0<local_NE0;i0++) { |
184 |
|
185 |
k=i0+local_NE0*i1; |
186 |
node0=Nstride0*N_PER_E*(i0+e_offset0)+Nstride1*N_PER_E*(i1+e_offset1); |
187 |
|
188 |
out->Elements->Id[k]=(i0+e_offset0)+NE0*(i1+e_offset1); |
189 |
out->Elements->Tag[k]=0; |
190 |
out->Elements->Owner[k]=myRank; |
191 |
|
192 |
out->Elements->Nodes[INDEX2(0,k,NN)]=node0; |
193 |
out->Elements->Nodes[INDEX2(1,k,NN)]=node0+2*Nstride0; |
194 |
out->Elements->Nodes[INDEX2(2,k,NN)]=node0+2*Nstride1+2*Nstride0; |
195 |
out->Elements->Nodes[INDEX2(3,k,NN)]=node0+2*Nstride1; |
196 |
out->Elements->Nodes[INDEX2(4,k,NN)]=node0+1*Nstride0; |
197 |
out->Elements->Nodes[INDEX2(5,k,NN)]=node0+Nstride1+2*Nstride0; |
198 |
out->Elements->Nodes[INDEX2(6,k,NN)]=node0+2*Nstride1+1*Nstride0; |
199 |
out->Elements->Nodes[INDEX2(7,k,NN)]=node0+Nstride1; |
200 |
if (useFullElementOrder) { |
201 |
out->Elements->Nodes[INDEX2(8,k,NN)]=node0+1*Nstride1+1*Nstride0; |
202 |
} |
203 |
} |
204 |
} |
205 |
/* face elements */ |
206 |
NN=out->FaceElements->numNodes; |
207 |
totalNECount=NE0*NE1; |
208 |
faceNECount=0; |
209 |
if (!periodic[0] && (local_NE0>0)) { |
210 |
/* ** elements on boundary 001 (x1=0): */ |
211 |
|
212 |
if (e_offset0 == 0) { |
213 |
#pragma omp parallel for private(i1,k,node0) |
214 |
for (i1=0;i1<local_NE1;i1++) { |
215 |
|
216 |
k=i1+faceNECount; |
217 |
node0=Nstride1*N_PER_E*(i1+e_offset1); |
218 |
|
219 |
out->FaceElements->Id[k]=i1+e_offset1+totalNECount; |
220 |
out->FaceElements->Tag[k]=1; |
221 |
out->FaceElements->Owner[k]=myRank; |
222 |
if (useElementsOnFace) { |
223 |
out->FaceElements->Nodes[INDEX2(0,k,NN)]=node0+2*Nstride1; |
224 |
out->FaceElements->Nodes[INDEX2(1,k,NN)]=node0; |
225 |
out->FaceElements->Nodes[INDEX2(2,k,NN)]=node0+2*Nstride0; |
226 |
out->FaceElements->Nodes[INDEX2(3,k,NN)]=node0+2*Nstride1+2*Nstride0; |
227 |
out->FaceElements->Nodes[INDEX2(4,k,NN)]=node0+Nstride1; |
228 |
out->FaceElements->Nodes[INDEX2(5,k,NN)]=node0+1*Nstride0; |
229 |
out->FaceElements->Nodes[INDEX2(6,k,NN)]=node0+Nstride1+2*Nstride0; |
230 |
out->FaceElements->Nodes[INDEX2(7,k,NN)]=node0+2*Nstride1+1*Nstride0; |
231 |
} else { |
232 |
out->FaceElements->Nodes[INDEX2(0,k,NN)]=node0+2*Nstride1; |
233 |
out->FaceElements->Nodes[INDEX2(1,k,NN)]=node0; |
234 |
out->FaceElements->Nodes[INDEX2(2,k,NN)]=node0+Nstride1; |
235 |
} |
236 |
} |
237 |
faceNECount+=local_NE1; |
238 |
} |
239 |
totalNECount+=NE1; |
240 |
/* ** elements on boundary 002 (x1=1): */ |
241 |
if (local_NE0+e_offset0 == NE0) { |
242 |
#pragma omp parallel for private(i1,k,node0) |
243 |
for (i1=0;i1<local_NE1;i1++) { |
244 |
k=i1+faceNECount; |
245 |
node0=Nstride0*N_PER_E*(NE0-1)+Nstride1*N_PER_E*(i1+e_offset1); |
246 |
|
247 |
out->FaceElements->Id[k]=(i1+e_offset1)+totalNECount; |
248 |
out->FaceElements->Tag[k]=2; |
249 |
out->FaceElements->Owner[k]=myRank; |
250 |
|
251 |
if (useElementsOnFace) { |
252 |
out->FaceElements->Nodes[INDEX2(0,k,NN)]=node0+2*Nstride0; |
253 |
out->FaceElements->Nodes[INDEX2(1,k,NN)]=node0+2*Nstride1+2*Nstride0; |
254 |
out->FaceElements->Nodes[INDEX2(2,k,NN)]=node0+2*Nstride1; |
255 |
out->FaceElements->Nodes[INDEX2(3,k,NN)]=node0; |
256 |
out->FaceElements->Nodes[INDEX2(4,k,NN)]=node0+Nstride1+2*Nstride0; |
257 |
out->FaceElements->Nodes[INDEX2(5,k,NN)]=node0+2*Nstride1+1*Nstride0; |
258 |
out->FaceElements->Nodes[INDEX2(6,k,NN)]=node0+Nstride1; |
259 |
out->FaceElements->Nodes[INDEX2(7,k,NN)]=node0+1*Nstride0; |
260 |
} else { |
261 |
out->FaceElements->Nodes[INDEX2(0,k,NN)]=node0+2*Nstride0; |
262 |
out->FaceElements->Nodes[INDEX2(1,k,NN)]=node0+2*Nstride1+2*Nstride0; |
263 |
out->FaceElements->Nodes[INDEX2(2,k,NN)]=node0+Nstride1+2*Nstride0; |
264 |
} |
265 |
} |
266 |
faceNECount+=local_NE1; |
267 |
} |
268 |
totalNECount+=NE1; |
269 |
} |
270 |
if (!periodic[1] && (local_NE0>0)) { |
271 |
/* ** elements on boundary 010 (x2=0): */ |
272 |
if (e_offset1 == 0) { |
273 |
#pragma omp parallel for private(i0,k,node0) |
274 |
for (i0=0;i0<local_NE0;i0++) { |
275 |
k=i0+faceNECount; |
276 |
node0=Nstride0*N_PER_E*(i0+e_offset0); |
277 |
|
278 |
out->FaceElements->Id[k]=e_offset0+i0+totalNECount; |
279 |
out->FaceElements->Tag[k]=10; |
280 |
out->FaceElements->Owner[k]=myRank; |
281 |
|
282 |
if (useElementsOnFace) { |
283 |
out->FaceElements->Nodes[INDEX2(0,k,NN)]=node0; |
284 |
out->FaceElements->Nodes[INDEX2(1,k,NN)]=node0+2*Nstride0; |
285 |
out->FaceElements->Nodes[INDEX2(2,k,NN)]=node0+2*Nstride1+2*Nstride0; |
286 |
out->FaceElements->Nodes[INDEX2(3,k,NN)]=node0+2*Nstride1; |
287 |
out->FaceElements->Nodes[INDEX2(4,k,NN)]=node0+1*Nstride0; |
288 |
out->FaceElements->Nodes[INDEX2(5,k,NN)]=node0+Nstride1+2*Nstride0; |
289 |
out->FaceElements->Nodes[INDEX2(6,k,NN)]=node0+2*Nstride1+1*Nstride0; |
290 |
out->FaceElements->Nodes[INDEX2(7,k,NN)]=node0+Nstride1; |
291 |
} else { |
292 |
out->FaceElements->Nodes[INDEX2(0,k,NN)]=node0; |
293 |
out->FaceElements->Nodes[INDEX2(1,k,NN)]=node0+2*Nstride0; |
294 |
out->FaceElements->Nodes[INDEX2(2,k,NN)]=node0+1*Nstride0; |
295 |
} |
296 |
} |
297 |
faceNECount+=local_NE0; |
298 |
} |
299 |
totalNECount+=NE0; |
300 |
/* ** elements on boundary 020 (x2=1): */ |
301 |
if (local_NE1+e_offset1 == NE1) { |
302 |
#pragma omp parallel for private(i0,k,node0) |
303 |
for (i0=0;i0<local_NE0;i0++) { |
304 |
k=i0+faceNECount; |
305 |
node0=Nstride0*N_PER_E*(i0+e_offset0)+Nstride1*N_PER_E*(NE1-1); |
306 |
|
307 |
out->FaceElements->Id[k]=i0+e_offset0+totalNECount; |
308 |
out->FaceElements->Tag[k]=20; |
309 |
out->FaceElements->Owner[k]=myRank; |
310 |
if (useElementsOnFace) { |
311 |
out->FaceElements->Nodes[INDEX2(0,k,NN)]=node0+2*Nstride1+2*Nstride0; |
312 |
out->FaceElements->Nodes[INDEX2(1,k,NN)]=node0+2*Nstride1; |
313 |
out->FaceElements->Nodes[INDEX2(2,k,NN)]=node0; |
314 |
out->FaceElements->Nodes[INDEX2(3,k,NN)]=node0+2*Nstride0; |
315 |
out->FaceElements->Nodes[INDEX2(4,k,NN)]=node0+2*Nstride1+1*Nstride0; |
316 |
out->FaceElements->Nodes[INDEX2(5,k,NN)]=node0+Nstride1; |
317 |
out->FaceElements->Nodes[INDEX2(6,k,NN)]=node0+1*Nstride0; |
318 |
out->FaceElements->Nodes[INDEX2(7,k,NN)]=node0+Nstride1+2*Nstride0; |
319 |
} else { |
320 |
out->FaceElements->Nodes[INDEX2(0,k,NN)]=node0+2*Nstride1+2*Nstride0; |
321 |
out->FaceElements->Nodes[INDEX2(1,k,NN)]=node0+2*Nstride1; |
322 |
out->FaceElements->Nodes[INDEX2(2,k,NN)]=node0+2*Nstride1+1*Nstride0; |
323 |
} |
324 |
} |
325 |
faceNECount+=local_NE0; |
326 |
} |
327 |
totalNECount+=NE0; |
328 |
} |
329 |
/* add tag names */ |
330 |
Finley_Mesh_addTagMap(out,"top", 20); |
331 |
Finley_Mesh_addTagMap(out,"bottom", 10); |
332 |
Finley_Mesh_addTagMap(out,"left", 1); |
333 |
Finley_Mesh_addTagMap(out,"right", 2); |
334 |
|
335 |
/* prepare mesh for further calculatuions:*/ |
336 |
if (Finley_noError()) { |
337 |
Finley_Mesh_resolveNodeIds(out); |
338 |
} |
339 |
if (Finley_noError()) { |
340 |
Finley_Mesh_prepare(out, optimize); |
341 |
} |
342 |
} |
343 |
if (!Finley_noError()) { |
344 |
Finley_Mesh_free(out); |
345 |
} |
346 |
/* free up memory */ |
347 |
Paso_MPIInfo_free( mpi_info ); |
348 |
#ifdef Finley_TRACE |
349 |
printf("timing: mesh generation: %.4e sec\n",Finley_timer()-time0); |
350 |
#endif |
351 |
|
352 |
return out; |
353 |
} |