1 |
jgs |
108 |
# $Id$ |
2 |
|
|
|
3 |
|
|
# Test for the AdvectivePDE class |
4 |
|
|
# |
5 |
|
|
# for a single equation the test problem is |
6 |
|
|
# |
7 |
|
|
# -(K_{ij}u_{,j})_{,i} - (w_i u)_{,i} + v_j u_{,j} =0 |
8 |
|
|
# |
9 |
|
|
# + constraints on the surface |
10 |
|
|
# |
11 |
|
|
# for system of two equation the test problem is |
12 |
|
|
# |
13 |
|
|
# -(K_{milj}u_{l,j})_{,i} - (w_{mil} u_l)_{,i} + v_{mlj} u_{l,j} =0 |
14 |
|
|
# |
15 |
|
|
# + constraints on the surface |
16 |
|
|
# |
17 |
|
|
# K,w and v are constant (we will set v=0 or w=0) |
18 |
|
|
# |
19 |
|
|
# the test solution is u(x)=e^{z_i*x_i} and u_l(x)=e^{z_{li}*x_i} |
20 |
|
|
# |
21 |
|
|
# an easy caculation shows that |
22 |
|
|
# |
23 |
|
|
# z_i*K_{ij}*z_j=(v_i-w_i)*z_i and z_{li}*K_{milj}*z_{lj}=(v_{mjl}-w_{mlj})*z_{lj} |
24 |
|
|
# |
25 |
|
|
# obviously one can choose: v_i-w_i=K_{ji}z_j and v_{mjl}-w_{mlj}=z_{li}*K_{milj} (no summation over l) |
26 |
|
|
# |
27 |
|
|
|
28 |
elspeth |
617 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
29 |
|
|
http://www.access.edu.au |
30 |
|
|
Primary Business: Queensland, Australia""" |
31 |
|
|
__license__="""Licensed under the Open Software License version 3.0 |
32 |
|
|
http://www.opensource.org/licenses/osl-3.0.php""" |
33 |
jgs |
108 |
from esys.escript import * |
34 |
gross |
423 |
from esys.escript.linearPDEs import AdvectivePDE,LinearPDE |
35 |
jgs |
108 |
from esys import finley |
36 |
|
|
from random import random |
37 |
|
|
|
38 |
|
|
def printError(u,u_ex): |
39 |
|
|
if u.getRank()==0: |
40 |
|
|
out=" error = %e range = [%e:%e] [%e:%e]"%(Lsup(u-u_ex)/Lsup(u_ex),sup(u),inf(u),sup(u_ex),inf(u_ex)) |
41 |
|
|
else: |
42 |
|
|
out="\n" |
43 |
|
|
for i in range(u.getShape()[0]): |
44 |
|
|
out+=" %d error = %e range = [%e:%e] [%e:%e]\n"%(i,Lsup(u[i]-u_ex[i])/Lsup(u_ex[i]),sup(u[i]),inf(u[i]),sup(u_ex[i]),inf(u_ex[i])) |
45 |
|
|
return out |
46 |
|
|
|
47 |
|
|
|
48 |
|
|
def makeRandomFloats(n,val_low=0.,val_up=1.): |
49 |
|
|
out=[] |
50 |
|
|
for i in range(n): |
51 |
|
|
out.append((val_up-val_low)*random()+val_low) |
52 |
|
|
return out |
53 |
|
|
|
54 |
|
|
def makeRandomFloatMatrix(m,n,val_low=0.,val_up=1.): |
55 |
|
|
out=[] |
56 |
|
|
for i in range(m): |
57 |
|
|
out.append(makeRandomFloats(n,val_low,val_up)) |
58 |
|
|
return out |
59 |
|
|
|
60 |
|
|
def makeRandomFloatTensor(l,k,m,n,val_low=0.,val_up=1.): |
61 |
|
|
out=[] |
62 |
|
|
for j in range(l): |
63 |
|
|
out2=[] |
64 |
|
|
for i in range(k): out2.append(makeRandomFloatMatrix(m,n,val_low,val_up)) |
65 |
|
|
out.append(out2) |
66 |
|
|
return out |
67 |
|
|
|
68 |
|
|
ne=20 |
69 |
jgs |
110 |
# for d in [2,3]: |
70 |
|
|
for d in [3]: |
71 |
jgs |
108 |
# create domain: |
72 |
|
|
if d==2: |
73 |
|
|
mydomain=finley.Rectangle(ne,ne,1) |
74 |
|
|
x=mydomain.getX() |
75 |
gross |
423 |
msk=whereZero(x[0])+whereZero(x[0]-1.)+whereZero(x[1])+whereZero(x[1]-1.) |
76 |
jgs |
108 |
else: |
77 |
|
|
mydomain=finley.Brick(ne,ne,ne,1) |
78 |
|
|
x=mydomain.getX() |
79 |
gross |
423 |
msk=whereZero(x[0])+whereZero(x[0]-1.)+whereZero(x[1])+whereZero(x[1]-1.)+whereZero(x[2])+whereZero(x[2]-1.) |
80 |
jgs |
108 |
print "@ generated %d-dimension mesh with %d elements in each direction"%(d,ne) |
81 |
|
|
# for ncomp in [1,2]: |
82 |
jgs |
110 |
for ncomp in [2]: |
83 |
jgs |
108 |
if ncomp==1: |
84 |
|
|
maskf=1. |
85 |
|
|
Z=makeRandomFloats(d,-1.,0.) |
86 |
|
|
K_sup=makeRandomFloatMatrix(d,d,-1.,1.) |
87 |
|
|
K=numarray.identity(d)*1. |
88 |
|
|
else: |
89 |
|
|
maskf=numarray.ones(ncomp) |
90 |
|
|
Z=makeRandomFloatMatrix(ncomp,d,-1.,0.) |
91 |
|
|
K_sup=makeRandomFloatTensor(ncomp,d,ncomp,d,-1.,1.) |
92 |
|
|
K=numarray.zeros([ncomp,d,ncomp,d])*0. |
93 |
|
|
for i in range(ncomp): |
94 |
|
|
K[i,:,i,:]=numarray.identity(d)*1. |
95 |
jgs |
110 |
K_sup=numarray.array(K_sup) |
96 |
jgs |
108 |
Z=numarray.array(Z) |
97 |
|
|
Z/=length(Z) |
98 |
|
|
if ncomp==1: |
99 |
|
|
Zx=Z[0]*x[0] |
100 |
|
|
for j in range(1,d): |
101 |
|
|
Zx+=Z[j]*x[j] |
102 |
|
|
else: |
103 |
|
|
Zx=x[0]*Z[:,0] |
104 |
|
|
for j in range(1,d): |
105 |
|
|
Zx+=x[j]*Z[:,j] |
106 |
jgs |
110 |
K+=0.02*K_sup/length(K_sup) |
107 |
jgs |
108 |
K/=length(K) |
108 |
|
|
if ncomp==1: |
109 |
|
|
U=numarray.matrixmultiply(numarray.transpose(K),Z) |
110 |
|
|
else: |
111 |
jgs |
110 |
U=numarray.zeros([ncomp,d,ncomp])*1. |
112 |
jgs |
108 |
for m in range(ncomp): |
113 |
|
|
for l in range(ncomp): |
114 |
|
|
for j in range(d): |
115 |
|
|
for i in range(d): |
116 |
|
|
U[m,j,l]+=K[m,i,l,j]*Z[l,i] |
117 |
|
|
|
118 |
|
|
# create domain: |
119 |
|
|
mypde=AdvectivePDE(mydomain) |
120 |
|
|
# mypde.setSolverMethod(mypde.DIRECT) |
121 |
gross |
423 |
print K |
122 |
|
|
mypde.setValue(q=msk*maskf) |
123 |
|
|
mypde.setValue(A=K) |
124 |
|
|
mypde.setValue(A=K,q=msk*maskf) |
125 |
jgs |
110 |
mypde.checkSymmetry() |
126 |
jgs |
108 |
# run Peclet |
127 |
jgs |
110 |
for Pe in [0.001,1.,1.,10.,100,1000.,10000.,100000.,1000000.,10000000.]: |
128 |
|
|
peclet=Pe*length(U)/2./length(K)/ne |
129 |
|
|
print "@@@ Peclet Number :",peclet |
130 |
jgs |
108 |
u_ex=exp(Pe*Zx) |
131 |
|
|
mypde.setValue(r=u_ex) |
132 |
jgs |
110 |
# mypde.setValue(B=Data(),C=Pe*U) |
133 |
|
|
# u=mypde.getSolution() |
134 |
|
|
# print "@@@@ C=U: Pe = ",peclet,printError(u,u_ex) |
135 |
jgs |
108 |
mypde.setValue(C=Data(),B=-Pe*U) |
136 |
|
|
u=mypde.getSolution() |
137 |
jgs |
110 |
print "@@@@ B=-U: Pe = ",peclet,printError(u,u_ex) |