1 |
# |
2 |
# $Id$ |
3 |
# |
4 |
####################################################### |
5 |
# |
6 |
# Copyright 2003-2007 by ACceSS MNRF |
7 |
# Copyright 2007 by University of Queensland |
8 |
# |
9 |
# http://esscc.uq.edu.au |
10 |
# Primary Business: Queensland, Australia |
11 |
# Licensed under the Open Software License version 3.0 |
12 |
# http://www.opensource.org/licenses/osl-3.0.php |
13 |
# |
14 |
####################################################### |
15 |
# |
16 |
|
17 |
# Test for the AdvectivePDE class |
18 |
# |
19 |
# for a single equation the test problem is |
20 |
# |
21 |
# -(K_{ij}u_{,j})_{,i} - (w_i u)_{,i} + v_j u_{,j} =0 |
22 |
# |
23 |
# + constraints on the surface |
24 |
# |
25 |
# for system of two equation the test problem is |
26 |
# |
27 |
# -(K_{milj}u_{l,j})_{,i} - (w_{mil} u_l)_{,i} + v_{mlj} u_{l,j} =0 |
28 |
# |
29 |
# + constraints on the surface |
30 |
# |
31 |
# K,w and v are constant (we will set v=0 or w=0) |
32 |
# |
33 |
# the test solution is u(x)=e^{z_i*x_i} and u_l(x)=e^{z_{li}*x_i} |
34 |
# |
35 |
# an easy caculation shows that |
36 |
# |
37 |
# z_i*K_{ij}*z_j=(v_i-w_i)*z_i and z_{li}*K_{milj}*z_{lj}=(v_{mjl}-w_{mlj})*z_{lj} |
38 |
# |
39 |
# obviously one can choose: v_i-w_i=K_{ji}z_j and v_{mjl}-w_{mlj}=z_{li}*K_{milj} (no summation over l) |
40 |
# |
41 |
|
42 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
43 |
http://www.access.edu.au |
44 |
Primary Business: Queensland, Australia""" |
45 |
__license__="""Licensed under the Open Software License version 3.0 |
46 |
http://www.opensource.org/licenses/osl-3.0.php""" |
47 |
from esys.escript import * |
48 |
from esys.escript.linearPDEs import AdvectivePDE,LinearPDE |
49 |
from esys import finley |
50 |
from random import random |
51 |
|
52 |
def printError(u,u_ex): |
53 |
if u.getRank()==0: |
54 |
out=" error = %e range = [%e:%e] [%e:%e]"%(Lsup(u-u_ex)/Lsup(u_ex),sup(u),inf(u),sup(u_ex),inf(u_ex)) |
55 |
else: |
56 |
out="\n" |
57 |
for i in range(u.getShape()[0]): |
58 |
out+=" %d error = %e range = [%e:%e] [%e:%e]\n"%(i,Lsup(u[i]-u_ex[i])/Lsup(u_ex[i]),sup(u[i]),inf(u[i]),sup(u_ex[i]),inf(u_ex[i])) |
59 |
return out |
60 |
|
61 |
|
62 |
def makeRandomFloats(n,val_low=0.,val_up=1.): |
63 |
out=[] |
64 |
for i in range(n): |
65 |
out.append((val_up-val_low)*random()+val_low) |
66 |
return out |
67 |
|
68 |
def makeRandomFloatMatrix(m,n,val_low=0.,val_up=1.): |
69 |
out=[] |
70 |
for i in range(m): |
71 |
out.append(makeRandomFloats(n,val_low,val_up)) |
72 |
return out |
73 |
|
74 |
def makeRandomFloatTensor(l,k,m,n,val_low=0.,val_up=1.): |
75 |
out=[] |
76 |
for j in range(l): |
77 |
out2=[] |
78 |
for i in range(k): out2.append(makeRandomFloatMatrix(m,n,val_low,val_up)) |
79 |
out.append(out2) |
80 |
return out |
81 |
|
82 |
ne=20 |
83 |
# for d in [2,3]: |
84 |
for d in [3]: |
85 |
# create domain: |
86 |
if d==2: |
87 |
mydomain=finley.Rectangle(ne,ne,1) |
88 |
x=mydomain.getX() |
89 |
msk=whereZero(x[0])+whereZero(x[0]-1.)+whereZero(x[1])+whereZero(x[1]-1.) |
90 |
else: |
91 |
mydomain=finley.Brick(ne,ne,ne,1) |
92 |
x=mydomain.getX() |
93 |
msk=whereZero(x[0])+whereZero(x[0]-1.)+whereZero(x[1])+whereZero(x[1]-1.)+whereZero(x[2])+whereZero(x[2]-1.) |
94 |
print "@ generated %d-dimension mesh with %d elements in each direction"%(d,ne) |
95 |
# for ncomp in [1,2]: |
96 |
for ncomp in [2]: |
97 |
if ncomp==1: |
98 |
maskf=1. |
99 |
Z=makeRandomFloats(d,-1.,0.) |
100 |
K_sup=makeRandomFloatMatrix(d,d,-1.,1.) |
101 |
K=numarray.identity(d)*1. |
102 |
else: |
103 |
maskf=numarray.ones(ncomp) |
104 |
Z=makeRandomFloatMatrix(ncomp,d,-1.,0.) |
105 |
K_sup=makeRandomFloatTensor(ncomp,d,ncomp,d,-1.,1.) |
106 |
K=numarray.zeros([ncomp,d,ncomp,d])*0. |
107 |
for i in range(ncomp): |
108 |
K[i,:,i,:]=numarray.identity(d)*1. |
109 |
K_sup=numarray.array(K_sup) |
110 |
Z=numarray.array(Z) |
111 |
Z/=length(Z) |
112 |
if ncomp==1: |
113 |
Zx=Z[0]*x[0] |
114 |
for j in range(1,d): |
115 |
Zx+=Z[j]*x[j] |
116 |
else: |
117 |
Zx=x[0]*Z[:,0] |
118 |
for j in range(1,d): |
119 |
Zx+=x[j]*Z[:,j] |
120 |
K+=0.02*K_sup/length(K_sup) |
121 |
K/=length(K) |
122 |
if ncomp==1: |
123 |
U=numarray.matrixmultiply(numarray.transpose(K),Z) |
124 |
else: |
125 |
U=numarray.zeros([ncomp,d,ncomp])*1. |
126 |
for m in range(ncomp): |
127 |
for l in range(ncomp): |
128 |
for j in range(d): |
129 |
for i in range(d): |
130 |
U[m,j,l]+=K[m,i,l,j]*Z[l,i] |
131 |
|
132 |
# create domain: |
133 |
mypde=AdvectivePDE(mydomain) |
134 |
# mypde.setSolverMethod(mypde.DIRECT) |
135 |
print K |
136 |
mypde.setValue(q=msk*maskf) |
137 |
mypde.setValue(A=K) |
138 |
mypde.setValue(A=K,q=msk*maskf) |
139 |
mypde.checkSymmetry() |
140 |
# run Peclet |
141 |
for Pe in [0.001,1.,1.,10.,100,1000.,10000.,100000.,1000000.,10000000.]: |
142 |
peclet=Pe*length(U)/2./length(K)/ne |
143 |
print "@@@ Peclet Number :",peclet |
144 |
u_ex=exp(Pe*Zx) |
145 |
mypde.setValue(r=u_ex) |
146 |
# mypde.setValue(B=Data(),C=Pe*U) |
147 |
# u=mypde.getSolution() |
148 |
# print "@@@@ C=U: Pe = ",peclet,printError(u,u_ex) |
149 |
mypde.setValue(C=Data(),B=-Pe*U) |
150 |
u=mypde.getSolution() |
151 |
print "@@@@ B=-U: Pe = ",peclet,printError(u,u_ex) |