1 |
# assemble test: |
2 |
# |
3 |
# $Id$ |
4 |
|
5 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
6 |
http://www.access.edu.au |
7 |
Primary Business: Queensland, Australia""" |
8 |
__license__="""Licensed under the Open Software License version 3.0 |
9 |
http://www.opensource.org/licenses/osl-3.0.php""" |
10 |
from esys.escript import * |
11 |
from esys.escript.linearPDEs import * |
12 |
from esys import finley |
13 |
from math import * |
14 |
|
15 |
global seed |
16 |
num_elem=2 # number of elements in each spatial direction |
17 |
num_equations=3 # number of equations |
18 |
integration_order=-1 # order of the integration scheme |
19 |
order_u=1 # solution order |
20 |
|
21 |
|
22 |
seed=1 |
23 |
rand_factor=sqrt(2.) |
24 |
# |
25 |
# The test solution is represented in the basis |
26 |
# |
27 |
# B=[1,x_1,x_2,x_3,x_1**2,x_2**2,x_3**2,....,x_1**order_u,x_2**order_u,x_3**order_u] for dim=3 |
28 |
# or |
29 |
# B=[1,x_1,x_2,x_1**2,x_2**2,....,x_1**order_u,x_2**order_u] for dim=2 |
30 |
# |
31 |
# length of B is len_Basis. |
32 |
# |
33 |
# any test solution u with numComp components is represented by the numComp x len_Basis matrix sol. |
34 |
# the actual solution is then given by u=matmul(sol,B). |
35 |
# |
36 |
|
37 |
global maxError,coeff,total_maxError,total_coeff |
38 |
total_maxError=0 |
39 |
total_coeff="" |
40 |
maxError=0 |
41 |
coeff="" |
42 |
D=() |
43 |
|
44 |
|
45 |
def randomNum(): |
46 |
global seed |
47 |
seed+=1 |
48 |
s=rand_factor*seed |
49 |
return s-int(s) |
50 |
|
51 |
def generateRandom(arg): |
52 |
if len(arg)==0: |
53 |
return randomNum() |
54 |
out=numarray.ones(arg,numarray.Float64) # *randomNum() |
55 |
return out |
56 |
|
57 |
def algebraicGrad(u): |
58 |
out=numarray.zeros([u.shape[0],dim,len_Basis],numarray.Float64) |
59 |
for s in range(u.shape[0]): |
60 |
for i in range(dim): |
61 |
for k in range(len_Basis): |
62 |
h=0 |
63 |
for j in range(len_Basis): |
64 |
h+=u[s,j]*D[i][k,j] |
65 |
out[s,i,k]=h |
66 |
return out |
67 |
|
68 |
def algebraicDiv(u): |
69 |
out=numarray.zeros([u.shape[0],len_Basis],numarray.Float64) |
70 |
for s in range(u.shape[0]): |
71 |
for k in range(len_Basis): |
72 |
h=0 |
73 |
for i in range(dim): |
74 |
for j in range(len_Basis): |
75 |
h+=u[s,i,j]*D[i][k,j] |
76 |
out[s,k]=h |
77 |
return out |
78 |
|
79 |
def mult4(A,u): |
80 |
out=numarray.zeros([A.shape[0],A.shape[1],len_Basis],numarray.Float64) |
81 |
for s in range(A.shape[0]): |
82 |
for i in range(A.shape[1]): |
83 |
for k in range(len_Basis): |
84 |
h=0 |
85 |
for t in range(A.shape[2]): |
86 |
for j in range(A.shape[3]): |
87 |
h+=A[s,i,t,j]*u[t,j,k] |
88 |
out[s,i,k]=h |
89 |
return out |
90 |
|
91 |
def mult3_2(A,u): |
92 |
out=numarray.zeros([A.shape[0],A.shape[1],len_Basis],numarray.Float64) |
93 |
for s in range(A.shape[0]): |
94 |
for i in range(A.shape[1]): |
95 |
for k in range(len_Basis): |
96 |
h=0 |
97 |
for t in range(A.shape[2]): |
98 |
h+=A[s,i,t]*u[t,k] |
99 |
out[s,i,k]=h |
100 |
return out |
101 |
|
102 |
def mult3_1(A,u): |
103 |
out=numarray.zeros([A.shape[0],len_Basis],numarray.Float64) |
104 |
for s in range(A.shape[0]): |
105 |
for k in range(len_Basis): |
106 |
h=0 |
107 |
for t in range(A.shape[1]): |
108 |
for j in range(A.shape[2]): |
109 |
h+=A[s,t,j]*u[t,j,k] |
110 |
out[s,k]=h |
111 |
return out |
112 |
|
113 |
def mult2(A,u): |
114 |
out=numarray.zeros([A.shape[0],len_Basis],numarray.Float64) |
115 |
for s in range(A.shape[0]): |
116 |
for k in range(len_Basis): |
117 |
h=0 |
118 |
for t in range(A.shape[1]): |
119 |
h+=A[s,t]*u[t,k] |
120 |
out[s,k]=h |
121 |
return out |
122 |
|
123 |
|
124 |
def evaluate(u,this): |
125 |
x=this.getX() |
126 |
if u.rank==2: |
127 |
out=Data(value=0,shape=(u.shape[0],),what=this,expand=True) |
128 |
for i0 in range(u.shape[0]): |
129 |
out[i0]=u[i0,0] |
130 |
for p in range(order_u): |
131 |
for j in range(dim): |
132 |
out[i0]+=u[i0,p*dim+j+1]*x[j]**(p+1) |
133 |
else: |
134 |
if u.shape[0]==1: |
135 |
out=Data(value=0,shape=(u.shape[1],),what=this,expand=True) |
136 |
for i1 in range(u.shape[1]): |
137 |
out[i1]=u[0,i1,0] |
138 |
for p in range(order_u): |
139 |
for j in range(dim): |
140 |
out[i1]+=u[0,i1,p*dim+j+1]*x[j]**(p+1) |
141 |
|
142 |
elif u.shape[1]==1: |
143 |
out=Data(value=0,shape=(u.shape[0],),what=this,expand=True) |
144 |
for i0 in range(u.shape[0]): |
145 |
out[i0]=u[i0,0,0] |
146 |
for p in range(order_u): |
147 |
for j in range(dim): |
148 |
out[i0]+=u[i0,0,p*dim+j+1]*x[j]**(p+1) |
149 |
else: |
150 |
out=Data(value=0,shape=(u.shape[0],u.shape[1]),what=this,expand=True) |
151 |
for i0 in range(u.shape[0]): |
152 |
for i1 in range(u.shape[1]): |
153 |
out[i0,i1]=u[i0,i1,0] |
154 |
for p in range(order_u): |
155 |
for j in range(dim): |
156 |
out[i0,i1]+=u[i0,i1,p*dim+j+1]*x[j]**(p+1) |
157 |
return out |
158 |
|
159 |
def checkSystem(text,operator,u,rhs): |
160 |
global maxError,coeff |
161 |
error=Lsup(operator*u-rhs) |
162 |
print "@@ "+text+" error: ",error |
163 |
if error>=maxError: |
164 |
maxError=error |
165 |
coeff=text |
166 |
# |
167 |
# |
168 |
def TestSystem(numEqu,numComp,mydomain,reduce): |
169 |
elem=Function(mydomain) |
170 |
face_elem=FunctionOnBoundary(mydomain) |
171 |
nodes=ContinuousFunction(mydomain) |
172 |
nrml=face_elem.getNormal() |
173 |
# |
174 |
# test solution: |
175 |
# |
176 |
u=generateRandom([numComp,len_Basis]) |
177 |
# u=numarray.zeros([numComp,len_Basis]) |
178 |
# u[0,0]=1 |
179 |
# u[0,1]=1 |
180 |
U=evaluate(u,nodes) |
181 |
gradu=algebraicGrad(u) |
182 |
# |
183 |
# test A: |
184 |
# |
185 |
for p in range(numEqu): |
186 |
for q in range(numComp): |
187 |
for i in range(dim): |
188 |
for j in range(dim): |
189 |
|
190 |
# check div( A grad(u) ) = div( X ) |
191 |
c_A=numarray.zeros([numEqu,dim,numComp,dim]) |
192 |
c_A[p,i,q,j]=1 |
193 |
if numEqu==1 and numComp==1: |
194 |
c_A2=numarray.reshape(c_A,[dim,dim]) |
195 |
text="A[%d,%d]"%(i,j) |
196 |
else: |
197 |
c_A2=c_A |
198 |
text="A[%d,%d,%d,%d]"%(p,i,q,j) |
199 |
x=mult4(c_A,gradu) |
200 |
mypde1=LinearPDE(mydomain) |
201 |
mypde1.setValue(A=c_A2,X=evaluate(x,elem)) |
202 |
mypde1.setReducedOrderForSolutionTo(reduce) |
203 |
checkSystem(text+" const with X",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
204 |
# check div( A grad(u) ) = Y |
205 |
y=-algebraicDiv(x) |
206 |
mypde2=LinearPDE(mydomain) |
207 |
mypde2.setValue(Y=evaluate(y,elem),y=matrixmult(evaluate(x,face_elem),nrml)) |
208 |
mypde2.setReducedOrderForSolutionsTo(reduce) |
209 |
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde2.getRightHandSide()) |
210 |
|
211 |
# check div( B u ) = div( X ) |
212 |
c_B=numarray.zeros([numEqu,dim,numComp]) |
213 |
c_B[p,i,q]=1 |
214 |
if numEqu==1 and numComp==1: |
215 |
c_B2=numarray.reshape(c_B,[dim]) |
216 |
text="B[%d]"%(i) |
217 |
else: |
218 |
c_B2=c_B |
219 |
text="B[%d,%d,%d]"%(p,i,q) |
220 |
x=mult3_2(c_B,u) |
221 |
mypde1=LinearPDE(mydomain) |
222 |
mypde1.setValue(B=c_B2,X=evaluate(x,elem)) |
223 |
mypde1.setReducedOrderForSolutionsTo(reduce) |
224 |
checkSystem(text+" const with X",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
225 |
# check div( B u ) = Y |
226 |
y=-algebraicDiv(x) |
227 |
mypde2=LinearPDE(mydomain) |
228 |
mypde2.setValue(Y=evaluate(y,elem),y=matrixmult(evaluate(x,face_elem),nrml)) |
229 |
mypde2.setReducedOrderForSolutionsTo(reduce) |
230 |
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde2.getRightHandSide()) |
231 |
|
232 |
# check C grad(u) = Y |
233 |
c_C=numarray.zeros([numEqu,numComp,dim]) |
234 |
c_C[p,q,i]=1 |
235 |
if numEqu==1 and numComp==1: |
236 |
c_C2=numarray.reshape(c_C,[dim]) |
237 |
text="C[%d]"%(i) |
238 |
else: |
239 |
c_C2=c_C |
240 |
text="C[%d,%d,%d]"%(p,q,i) |
241 |
y=mult3_1(c_C,gradu) |
242 |
mypde1=LinearPDE(mydomain) |
243 |
mypde1.setValue(C=c_C2,Y=evaluate(y,elem)) |
244 |
mypde1.setReducedOrderForSolutionsTo(reduce) |
245 |
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
246 |
|
247 |
|
248 |
# check D u= Y |
249 |
c_D=numarray.zeros([numEqu,numComp]) |
250 |
c_D[p,q]=1 |
251 |
if numEqu==1 and numComp==1: |
252 |
c_D2=numarray.reshape(c_D,[1]) |
253 |
text="D" |
254 |
else: |
255 |
c_D2=c_D |
256 |
text="D[%d,%d]"%(p,q) |
257 |
y=mult2(c_D,u) |
258 |
mypde1=LinearPDE(mydomain) |
259 |
mypde1.setValue(D=c_D2,Y=evaluate(y,elem)) |
260 |
mypde1.setReducedOrderForSolutionsTo(reduce) |
261 |
checkSystem(text+" const with Y",mypde1.getOperator(),U,mypde1.getRightHandSide()) |
262 |
|
263 |
# we start: |
264 |
for dim in [2,3]: |
265 |
len_Basis=dim*order_u+1 |
266 |
# |
267 |
# the differential operators: |
268 |
# |
269 |
# D_j(matmul(sol,B))=matmul(sol,D_jB)=matmul(matmul(sol,D[j]),B) |
270 |
# |
271 |
D=() |
272 |
for i in range(dim): |
273 |
D=D+(numarray.zeros([len_Basis,len_Basis],numarray.Float64),) |
274 |
for j in range(order_u): |
275 |
if j==0: |
276 |
D[i][0,i+j+1]=1 |
277 |
else: |
278 |
D[i][(j-1)*dim+i+1,j*dim+i+1]=j+1 |
279 |
# |
280 |
# generate mydomain: |
281 |
# |
282 |
for order in [1,2]: |
283 |
for onElements in [False,True]: |
284 |
if onElements==True: |
285 |
onElmtext=", with elements on faces" |
286 |
else: |
287 |
onElmtext="" |
288 |
if dim==3: |
289 |
mydomain=finley.Brick(num_elem,num_elem,num_elem,order=order,integrationOrder=integration_order,useElementsOnFace=onElements) |
290 |
else: |
291 |
mydomain=finley.Rectangle(num_elem,num_elem,order=order,integrationOrder=integration_order,useElementsOnFace=onElements) |
292 |
for reduce in [False,True]: |
293 |
if reduce==True: |
294 |
redtext=",reduced" |
295 |
else: |
296 |
redtext="" |
297 |
# |
298 |
# and start the test process: |
299 |
# |
300 |
for numEqu in range(1,num_equations+1): |
301 |
print "@@@ Start testing assembling with dim=%d and %d equations (order=%d%s%s)"%(dim,numEqu,order,redtext,onElmtext) |
302 |
TestSystem(numEqu,numEqu,mydomain,reduce) |
303 |
print "@@@ end testing assembling (order=%d%s%s) with %d equations in %dD with maximum error %e for %s"%(order,redtext,onElmtext,numEqu,dim,maxError,coeff) |
304 |
if maxError>=total_maxError: |
305 |
total_maxError=maxError |
306 |
total_coeff=coeff+" with %d equations in %dD (order=%d%s%s)"%(numEqu,dim,order,redtext,onElmtext) |
307 |
|
308 |
print "@@@@ end testing assemblage with maximal error %e for %s"%(total_maxError,total_coeff) |
309 |
|
310 |
|