# Annotation of /trunk/finley/test/python/FCT_test1.py

Revision 2549 - (hide annotations)
Mon Jul 20 06:43:47 2009 UTC (10 years, 3 months ago) by jfenwick
File MIME type: text/x-python
File size: 3511 byte(s)
```Remainder of copyright date fixes
```
 1 ksteube 1811 2 ######################################################## 3 gross 1411 # 4 jfenwick 2548 # Copyright (c) 2003-2009 by University of Queensland 5 ksteube 1811 # Earth Systems Science Computational Center (ESSCC) 6 7 # 8 # Primary Business: Queensland, Australia 9 # Licensed under the Open Software License version 3.0 10 11 # 12 ######################################################## 13 14 jfenwick 2549 __copyright__="""Copyright (c) 2003-2009 by University of Queensland 15 ksteube 1811 Earth Systems Science Computational Center (ESSCC) 16 http://www.uq.edu.au/esscc 17 Primary Business: Queensland, Australia""" 18 __license__="""Licensed under the Open Software License version 3.0 19 20 jfenwick 2344 __url__= 21 ksteube 1811 22 # 23 gross 1411 # upwinding test moving a Gaussian hill around 24 # 25 # we solve U_,t + v_i u_,i =0 26 # 27 # the solution is given as u(x,t)=1/(4*pi*E*t)^{dim/2} * exp ( - |x-x_0(t)|^2/(4*E*t) ) 28 # 29 # where x_0(t) = [ cos(OMEGA0*T0)*0.5,-sin(OMEGA0*T0)*0.5 ] and v=[-y,x]*OMEGA0 for dim=2 and 30 # 31 # x_0(t) = [ cos(OMEGA0*T0)*0.5,-sin(OMEGA0*T0)*0.5 ] and v=[-y,x]*OMEGA0 for dim=3 32 # 33 # the solution is started from some time T0>0. 34 # 35 # We are using five quality messurements for u_h 36 # 37 # - inf(u_h) > 0 38 # - sup(u_h)/sup(u(x,t)) = sup(u_h)*(4*pi*E*t)^{dim/2} ~ 1 39 # - integrate(u_h) ~ 1 40 # - | x_0h-x_0 | ~ 0 where x_0h = integrate(x*u_h) 41 # - sigma_h/4*E*t ~ 1 where sigma_h=sqrt(integrate(length(x-x0h)**2 * u_h) * (DIM==3 ? sqrt(2./3.) :1 ) 42 # 43 # 44 from esys.escript import * 45 from esys.escript.linearPDEs import LinearSinglePDE, TransportPDE 46 from esys.finley import Rectangle, Brick 47 from math import pi, ceil 48 NE=128 49 gross 1562 NE=4 50 gross 1411 DIM=2 51 THETA=0.5 52 OMEGA0=1. 53 ALPHA=pi/4 54 T0=0 55 T_END=2.*pi 56 dt=1e-3*10*10 57 E=1.e-3 58 TEST_SUPG=False or True 59 60 61 if DIM==2: 62 dom=Rectangle(NE,NE) 63 else: 64 dom=Brick(NE,NE,NE) 65 gross 1562 u0=dom.getX()[0] 66 caltinay 2534 # saveVTK("u.%s.vtu"%0,u=u0) 67 gross 1562 # print "XX"*80 68 gross 1411 dom.setX(2*dom.getX()-1) 69 70 # set initial value 71 x=dom.getX() 72 r=sqrt(x[0]**2+(x[1]-1./3.)**2) 73 gross 1562 # u0=whereNegative(r-1./3.)*wherePositive(wherePositive(abs(x[0])-0.05)+wherePositive(x[1]-0.5)) 74 gross 1411 75 x=Function(dom).getX() 76 if DIM == 2: 77 V=OMEGA0*(x[0]*[0,-1]+x[1]*[1,0]) 78 else: 79 V=OMEGA0*(x[0]*[0,cos(ALPHA),0]+x[1]*[-cos(ALPHA),0,sin(ALPHA)]+x[2]*[0.,-sin(ALPHA),0.]) 80 #=================== 81 fc=TransportPDE(dom,num_equations=1,theta=THETA) 82 x=Function(dom).getX() 83 fc.setValue(M=Scalar(1.,Function(dom)),C=V) 84 #============== 85 if TEST_SUPG: 86 supg=LinearSinglePDE(dom) 87 supg.setValue(D=1.) 88 supg.setSolverMethod(supg.LUMPING) 89 dt_supg=inf(dom.getSize()/length(V)) 90 u_supg=u0*1. 91 92 c=0 93 caltinay 2534 # saveVTK("u.%s.vtu"%c,u=u0) 94 gross 1411 fc.setInitialSolution(u0) 95 t=T0 96 print "QUALITY FCT: time = %s pi"%(t/pi),inf(u0),sup(u0),integrate(u0) 97 while t