# Contents of /trunk/finley/test/python/FCT_test1.py

Revision 4821 - (show annotations)
Tue Apr 1 04:58:33 2014 UTC (5 years, 2 months ago) by sshaw
File MIME type: text/x-python
File size: 3661 byte(s)
```moved SolverOptions to c++, split into SolverOptions for the options and SolverBuddy as the state as a precursor to per-pde solving... does break some use cases (e.g. pde.getSolverOptions().DIRECT will now fail, new value access is with SolverOptions.DIRECT), examples and documentation updated to match
```
 1 2 ############################################################################## 3 # 4 # Copyright (c) 2003-2014 by University of Queensland 5 6 # 7 # Primary Business: Queensland, Australia 8 # Licensed under the Open Software License version 3.0 9 10 # 11 # Development until 2012 by Earth Systems Science Computational Center (ESSCC) 12 # Development 2012-2013 by School of Earth Sciences 13 # Development from 2014 by Centre for Geoscience Computing (GeoComp) 14 # 15 ############################################################################## 16 from __future__ import print_function 17 18 __copyright__="""Copyright (c) 2003-2014 by University of Queensland 19 http://www.uq.edu.au 20 Primary Business: Queensland, Australia""" 21 __license__="""Licensed under the Open Software License version 3.0 22 23 __url__= 24 25 # 26 # upwinding test moving a Gaussian hill around 27 # 28 # we solve U_,t + v_i u_,i =0 29 # 30 # the solution is given as u(x,t)=1/(4*pi*E*t)^{dim/2} * exp ( - |x-x_0(t)|^2/(4*E*t) ) 31 # 32 # where x_0(t) = [ cos(OMEGA0*T0)*0.5,-sin(OMEGA0*T0)*0.5 ] and v=[-y,x]*OMEGA0 for dim=2 and 33 # 34 # x_0(t) = [ cos(OMEGA0*T0)*0.5,-sin(OMEGA0*T0)*0.5 ] and v=[-y,x]*OMEGA0 for dim=3 35 # 36 # the solution is started from some time T0>0. 37 # 38 # We are using five quality messurements for u_h 39 # 40 # - inf(u_h) > 0 41 # - sup(u_h)/sup(u(x,t)) = sup(u_h)*(4*pi*E*t)^{dim/2} ~ 1 42 # - integrate(u_h) ~ 1 43 # - | x_0h-x_0 | ~ 0 where x_0h = integrate(x*u_h) 44 # - sigma_h/4*E*t ~ 1 where sigma_h=sqrt(integrate(length(x-x0h)**2 * u_h) * (DIM==3 ? sqrt(2./3.) :1 ) 45 # 46 # 47 48 from esys.escript import * 49 from esys.escript.linearPDEs import TransportPDE, SolverOptions 50 from esys.finley import Rectangle, Brick 51 #from esys.ripley import Rectangle, Brick 52 from esys.weipa import saveVTK 53 from math import pi, ceil 54 NE=128 55 #NE=4 56 DIM=2 57 THETA=0.5 58 OMEGA0=1. 59 ALPHA=pi/4 60 T0=0 61 T_END=2.*pi 62 dt=1e-3*10*10 63 E=1.e-3 64 65 66 dom=Rectangle(NE,NE) 67 u0=dom.getX()[0] 68 # saveVTK("u.%s.vtu"%0,u=u0) 69 # print "XX"*80 70 71 # set initial value 72 #dom.setX(2*dom.getX()-1) 73 #x=dom.getX() 74 #r=sqrt(x[0]**2+(x[1]-1./3.)**2) 75 #u0=whereNegative(r-1./3.)*wherePositive(wherePositive(abs(x[0])-0.05)+wherePositive(x[1]-0.5)) 76 77 #x=Function(dom).getX() 78 #if DIM == 2: 79 # V=OMEGA0*(x[0]*[0,-1]+x[1]*[1,0]) 80 #else: 81 # V=OMEGA0*(x[0]*[0,cos(ALPHA),0]+x[1]*[-cos(ALPHA),0,sin(ALPHA)]+x[2]*[0.,-sin(ALPHA),0.]) 82 83 x=dom.getX() 84 85 R0=0.15 86 #cylinder: 87 X0=0.5 88 Y0=0.75 89 r=sqrt((x[0]-X0)**2+(x[1]-Y0)**2)/R0 90 u0=whereNegative(r-1)*wherePositive(wherePositive(abs(x[0]-X0)-0.025)+wherePositive(x[1]-0.85)) 91 # cone: 92 X0=0.5 93 Y0=0.25 94 r=sqrt((x[0]-X0)**2+(x[1]-Y0)**2)/R0 95 u0=u0+wherePositive(1-r)*(1-r) 96 #hump 97 X0=0.25 98 Y0=0.5 99 r=sqrt((x[0]-X0)**2+(x[1]-Y0)**2)/R0 100 u0=u0+1./4.*(1+cos(pi*clip(r,maxval=1))) 101 102 x=Function(dom).getX() 103 V=OMEGA0*((0.5-x[0])*[0,1]+(0.5-x[1])*[-1,0]) 104 #=================== 105 106 fc=TransportPDE(dom,numEquations=1) 107 fc.getSolverOptions().setVerbosityOn() 108 #fc.getSolverOptions().setODESolver(SolverOptions.BACKWARD_EULER) 109 fc.getSolverOptions().setODESolver(SolverOptions.LINEAR_CRANK_NICOLSON) 110 fc.getSolverOptions().setODESolver(SolverOptions.CRANK_NICOLSON) 111 x=Function(dom).getX() 112 fc.setValue(M=1,C=V) 113 114 c=0 115 saveVTK("u.%s.vtu"%c,u=u0) 116 fc.setInitialSolution(u0) 117 dt=fc.getSafeTimeStepSize() 118 #dt=1.e-3 119 print("dt = ",dt) 120 t=T0 121 print("QUALITY FCT: time = %s pi"%(t/pi),inf(u0),sup(u0),integrate(u0)) 122 #T_END=200*dt 123 while t