1 |
# $Id$ |
2 |
|
3 |
|
4 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
5 |
http://www.access.edu.au |
6 |
Primary Business: Queensland, Australia""" |
7 |
__license__="""Licensed under the Open Software License version 3.0 |
8 |
http://www.opensource.org/licenses/osl-3.0.php""" |
9 |
from esys.escript import * |
10 |
from esys.escript.linearPDEs import Poisson |
11 |
from esys import finley |
12 |
|
13 |
ne_list=[10,15,22,33,50,75] |
14 |
height_list=[0.25,0.5,1.] |
15 |
|
16 |
|
17 |
def getDomain(dim,ne,height): |
18 |
|
19 |
if dim==2: |
20 |
ne1=int(ne*height+0.5) |
21 |
mydomain=finley.Rectangle(n0=ne,n1=ne1,l1=height,order=1) |
22 |
totne=ne1*ne |
23 |
else: |
24 |
ne2=int(ne*height+0.5) |
25 |
mydomain=finley.Brick(n0=ne,n1=ne,n2=ne2,l2=height,order=2) |
26 |
totne=ne2*ne*ne |
27 |
print "%d -dimensional domain generated."%dim |
28 |
print "height of the domain is ",height |
29 |
print "total number of elements is ",totne |
30 |
return mydomain |
31 |
|
32 |
|
33 |
def Solve1(mydomain,height): |
34 |
print "Fully constraint solution" |
35 |
l=[1.,1.,1.] |
36 |
l[mydomain.getDim()-1]=height |
37 |
cf=ContinuousFunction(mydomain) |
38 |
x=cf.getX() |
39 |
#construct exact solution: |
40 |
u_ex=Scalar(1.,cf) |
41 |
for i in range(mydomain.getDim()): |
42 |
u_ex*=x[i]*(x[i]-l[i]) |
43 |
#construct mask: |
44 |
msk=Scalar(0.,cf) |
45 |
for i in range(mydomain.getDim()): |
46 |
msk+=whereZero(x[i])+whereZero(x[i]-l[i]) |
47 |
#construct right hand side |
48 |
f=Scalar(0,cf) |
49 |
for i in range(mydomain.getDim()): |
50 |
f_p=Scalar(1,cf) |
51 |
for j in range(mydomain.getDim()): |
52 |
if i==j: |
53 |
f_p*=-2. |
54 |
else: |
55 |
f_p*=x[j]*(x[j]-l[j]) |
56 |
f+=f_p |
57 |
|
58 |
mypde=Poisson(mydomain) |
59 |
mypde.setTolerance(1.e-10) |
60 |
mypde.setValue(f=f,q=msk) |
61 |
u=mypde.getSolution() |
62 |
error=Lsup(u-u_ex)/Lsup(u_ex) |
63 |
print "error = ",error |
64 |
return error |
65 |
|
66 |
def Solve2(mydomain,height): |
67 |
print "Partially constraint solution" |
68 |
l=[1.,1.,1.] |
69 |
l[mydomain.getDim()-1]=height |
70 |
print l |
71 |
cf=ContinuousFunction(mydomain) |
72 |
x=cf.getX() |
73 |
#construct exact solution: |
74 |
u_ex=Scalar(1.,cf) |
75 |
for i in range(mydomain.getDim()): |
76 |
u_ex*=x[i]*(2*l[i]-x[i]) |
77 |
#construct mask: |
78 |
msk=Scalar(0.,cf) |
79 |
for i in range(mydomain.getDim()): |
80 |
msk+=whereZero(x[i]) |
81 |
#construct right hand side |
82 |
f=Scalar(0,cf) |
83 |
for i in range(mydomain.getDim()): |
84 |
f_p=Scalar(1,cf) |
85 |
for j in range(mydomain.getDim()): |
86 |
if i==j: |
87 |
f_p*=2. |
88 |
else: |
89 |
f_p*=x[j]*(2*l[j]-x[j]) |
90 |
f+=f_p |
91 |
mypde=Poisson(mydomain) |
92 |
mypde.setTolerance(1.e-10) |
93 |
mypde.setValue(f=f,q=msk) |
94 |
u=mypde.getSolution() |
95 |
error=Lsup(u-u_ex)/Lsup(u_ex) |
96 |
print "error = ",error |
97 |
return error |
98 |
|
99 |
|
100 |
def main() : |
101 |
error=0 |
102 |
for ne in ne_list: |
103 |
for dim in [2,3]: |
104 |
# for dim in [2]: |
105 |
for height in height_list: |
106 |
print "***************************************************************" |
107 |
mydomain= getDomain(dim,ne,height) |
108 |
print "---------------------------------------------------------------" |
109 |
error=max(error,Solve1(mydomain,height)) |
110 |
print "---------------------------------------------------------------" |
111 |
error=max(error,Solve2(mydomain,height)) |
112 |
print "***************************************************************" |
113 |
|
114 |
print "***************************************************************" |
115 |
print "maximum error: ",error |
116 |
print "***************************************************************" |
117 |
|
118 |
|
119 |
|
120 |
import profile as Pr, pstats as Ps |
121 |
|
122 |
|
123 |
if __name__ == "__main__": |
124 |
pr = Pr.Profile() |
125 |
pr.calibrate(10000) |
126 |
Pr.run('main()','eos_stats') |
127 |
stats = Ps.Stats('eos_stats') |
128 |
stats.strip_dirs() |
129 |
stats.sort_stats('time') |
130 |
stats.print_stats() |