17 |
from esys.escript import * |
from esys.escript import * |
18 |
from esys.linearPDEs import * |
from esys.linearPDEs import * |
19 |
import esys.finley as pdelib |
import esys.finley as pdelib |
20 |
|
from time import time |
21 |
|
|
22 |
from numarray import * |
from numarray import * |
23 |
|
|
24 |
# these values are currently fixed: |
# these values are currently fixed: |
25 |
len_x0=1. |
len_x0=1. |
26 |
alpha=0.1 |
alpha=10. |
27 |
|
tm=0 |
28 |
|
|
29 |
#############################################################################################################3 |
#############################################################################################################3 |
30 |
def solveVector(numDim, totalNumElem, len_x0, alpha, solver_method,prec): |
def solveVector(numDim, totalNumElem, len_x0, alpha, solver_method,prec): |
31 |
|
|
32 |
|
if prec=="": |
33 |
|
prec_id=0 |
34 |
|
else: |
35 |
|
prec_id=eval("LinearPDE.%s"%prec) |
36 |
|
solver_method_id=eval("LinearPDE.%s"%solver_method) |
37 |
print "Vector solver:" |
print "Vector solver:" |
38 |
recDim=array([len_x0,1.,1.]) |
recDim=array([len_x0,1.,1.]) |
39 |
# Define Computational Domain |
# Define Computational Domain |
81 |
# Build the pdelib System Matrix and RHS |
# Build the pdelib System Matrix and RHS |
82 |
mypde=LinearPDE(mesh) |
mypde=LinearPDE(mesh) |
83 |
mypde.setValue(A = A, Y = - 2 * alpha * (meshDim - 1)*ones(meshDim), q = bndryMask, r = u) |
mypde.setValue(A = A, Y = - 2 * alpha * (meshDim - 1)*ones(meshDim), q = bndryMask, r = u) |
84 |
mypde.setSolverMethod(solver_method) |
mypde.setSolverMethod(solver_method_id) |
85 |
|
|
86 |
# Solve for Approximate Solution |
# Solve for Approximate Solution |
87 |
u_approx = mypde.getSolution(preconditioner=prec,iter_max=10000) |
tm=time() |
88 |
|
u_approx = mypde.getSolution(preconditioner=prec_id,iter_max=10000) |
89 |
|
tm=time()-tm |
90 |
|
|
91 |
# Report Results |
# Report Results |
92 |
error=Lsup(u - u_approx)/Lsup(u) |
error=Lsup(u - u_approx)/Lsup(u) |
93 |
print " error L^sup Norm : ", error |
print "@@ Vector %d : %d : %s(%s): error L^sup Norm : %e, time %e"%(mypde.getDim(),totElem,solver_method,prec,error,tm) |
|
print " residual L^sup Norm : ", Lsup(mypde.getResidual(u_approx)) |
|
94 |
|
|
95 |
return error |
return error |
96 |
|
|
98 |
|
|
99 |
def solveScalar(numDim, totalNumElem, len_x0, alpha, solver_method,prec): |
def solveScalar(numDim, totalNumElem, len_x0, alpha, solver_method,prec): |
100 |
|
|
101 |
|
if prec=="": |
102 |
|
prec_id=0 |
103 |
|
else: |
104 |
|
prec_id=eval("LinearPDE.%s"%prec) |
105 |
|
solver_method_id=eval("LinearPDE.%s"%solver_method) |
106 |
print "Scalar solver:" |
print "Scalar solver:" |
107 |
recDim=array([len_x0,1.,1.]) |
recDim=array([len_x0,1.,1.]) |
108 |
# Define Computational Domain |
# Define Computational Domain |
141 |
# Build the pdelib System Matrix and RHS |
# Build the pdelib System Matrix and RHS |
142 |
mypde=LinearPDE(mesh) |
mypde=LinearPDE(mesh) |
143 |
mypde.setValue(A = identity(numDim), D = alpha, Y = alpha * u - 2 * meshDim, q = bndryMask, r = u) |
mypde.setValue(A = identity(numDim), D = alpha, Y = alpha * u - 2 * meshDim, q = bndryMask, r = u) |
144 |
mypde.setSolverMethod(solver_method) |
mypde.setSolverMethod(solver_method_id) |
145 |
|
|
146 |
# Solve for Approximate Solution |
# Solve for Approximate Solution |
147 |
u_approx = mypde.getSolution(preconditioner=prec,iter_max=10000) |
tm=time() |
148 |
|
u_approx = mypde.getSolution(preconditioner=prec_id,iter_max=10000) |
149 |
|
tm=time()-tm |
150 |
|
|
151 |
# Report Results |
# Report Results |
152 |
error=Lsup(u - u_approx)/Lsup(u) |
error=Lsup(u - u_approx)/Lsup(u) |
153 |
print " error L^sup Norm : ", error |
print "@@ Scalar %d : %d : %s(%s): error L^sup Norm : %e, time %e"%(mypde.getDim(),totElem,solver_method,prec,error,tm) |
|
print " residual L^sup Norm : ", Lsup(mypde.getResidual(u_approx)) |
|
154 |
|
|
155 |
return error |
return error |
156 |
|
|
160 |
print "Test is started:" |
print "Test is started:" |
161 |
print "----------------" |
print "----------------" |
162 |
error=0. |
error=0. |
163 |
# for numDim in [2,3]: |
for numDim in [2,3]: |
164 |
for numDim in [3]: |
for totalNumElem in [100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200, 102400,204800]: |
165 |
for totalNumElem in [100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200, 102400]: |
for problem in [solveScalar,solveVector]: |
166 |
# for problem in [solveScalar,solveVector]: |
if totalNumElem*2**numDim*numDim< 200000: error=max([problem(numDim, totalNumElem, len_x0, alpha,"DIRECT",""),error]) |
167 |
for problem in [solveScalar]: |
for solver_method in [ "PCG" ]: |
168 |
# for solver_method in [ LinearPDE.PRES20, LinearPDE.PCG, LinearPDE.DIRECT, LinearPDE.BICGSTAB]: |
for prec in [ "JACOBI", "ILU0" ]: |
|
for solver_method in [ LinearPDE.PCG ]: |
|
|
# for prec in [ LinearPDE.JACOBI, LinearPDE.ILU0 ]: |
|
|
for prec in [ LinearPDE.ILU0 ]: |
|
169 |
error=max([problem(numDim, totalNumElem, len_x0, alpha, solver_method,prec),error]) |
error=max([problem(numDim, totalNumElem, len_x0, alpha, solver_method,prec),error]) |
170 |
print "----------------" |
print "----------------" |
171 |
print "maximum error over all tests is ",error |
print "maximum error over all tests is ",error |