1 |
# |
2 |
# $Id$ |
3 |
# |
4 |
####################################################### |
5 |
# |
6 |
# Copyright 2003-2007 by ACceSS MNRF |
7 |
# Copyright 2007 by University of Queensland |
8 |
# |
9 |
# http://esscc.uq.edu.au |
10 |
# Primary Business: Queensland, Australia |
11 |
# Licensed under the Open Software License version 3.0 |
12 |
# http://www.opensource.org/licenses/osl-3.0.php |
13 |
# |
14 |
####################################################### |
15 |
# |
16 |
|
17 |
""" |
18 |
seismic wave propagation |
19 |
|
20 |
@var __author__: name of author |
21 |
@var __licence__: licence agreement |
22 |
@var __url__: url entry point on documentation |
23 |
@var __version__: version |
24 |
@var __date__: date of the version |
25 |
""" |
26 |
|
27 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
28 |
http://www.access.edu.au |
29 |
Primary Business: Queensland, Australia""" |
30 |
__license__="""Licensed under the Open Software License version 3.0 |
31 |
http://www.opensource.org/licenses/osl-3.0.php""" |
32 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
33 |
__url__="http://www.iservo.edu.au/esys/escript" |
34 |
__version__="$Revision$" |
35 |
__date__="$Date$" |
36 |
|
37 |
from esys.escript import * |
38 |
from esys.escript.linearPDEs import LinearPDE |
39 |
from esys.finley import Brick |
40 |
import time |
41 |
|
42 |
WORKDIR="/raid2/lutz/waves/" |
43 |
output=True |
44 |
n_end=10000 |
45 |
|
46 |
resolution=1000. # number of elements per m in the finest region |
47 |
resolution=400. # number of elements per m in the finest region |
48 |
o=1 # element order |
49 |
|
50 |
l=100000. # width and length m (without obsorber) |
51 |
h=30000. # height in m (without obsorber) |
52 |
d_absorber=l*0.10 # thickness of absorbing layer |
53 |
|
54 |
l_sand=20000. # thickness of sand region on surface |
55 |
h_sand=5000. # thickness of sand layer under the water |
56 |
|
57 |
l_x_water=10000. # length of water in x |
58 |
l_y_water=10000. # length of water in y |
59 |
h_water=2000. # depth of water region |
60 |
|
61 |
x_sand=l/2-l_x_water/2-l_sand # x coordinate of location of sand region (without obsorber) |
62 |
y_sand=l/2-l_y_water/2-l_sand # y coordinate of location of sand region (without obsorber) |
63 |
|
64 |
|
65 |
# origin |
66 |
origin={"x": -d_absorber, "y" : -d_absorber , "z" : -h-d_absorber } |
67 |
# location and geometrical size of event reltive to origin: |
68 |
xc=[l*0.2,l*0.3,-h*0.7] |
69 |
src_radius = 2*resolution |
70 |
# direction of event: |
71 |
event=numarray.array([0.,0.,1.])*1.e6 |
72 |
# time and length of the event |
73 |
tc=2. |
74 |
tc_length=0.5 |
75 |
|
76 |
# material properties: |
77 |
bedrock=0 |
78 |
absorber=1 |
79 |
water=2 |
80 |
sand=3 |
81 |
|
82 |
rho_tab={} |
83 |
rho_tab[bedrock]=8e3 |
84 |
rho_tab[absorber]=rho_tab[bedrock] |
85 |
rho_tab[water]=1e3 |
86 |
rho_tab[sand]=5e3 |
87 |
|
88 |
mu_tab={} |
89 |
mu_tab[bedrock]=1.7e11 |
90 |
mu_tab[absorber]=mu_tab[bedrock] |
91 |
mu_tab[water]=0. |
92 |
mu_tab[sand]=1.5e10 |
93 |
|
94 |
lmbd_tab={} |
95 |
lmbd_tab[bedrock]=1.7e11 |
96 |
lmbd_tab[absorber]=lmbd_tab[bedrock] |
97 |
lmbd_tab[water]=1.e9 |
98 |
lmbd_tab[sand]=1.5e10 |
99 |
|
100 |
eta_tab={} |
101 |
eta_tab[absorber]=-log(0.05)*sqrt(rho_tab[absorber]*(lmbd_tab[absorber]+2*mu_tab[absorber]))/d_absorber |
102 |
eta_tab[sand]=eta_tab[absorber]/40. |
103 |
eta_tab[water]=eta_tab[absorber]/40. |
104 |
eta_tab[bedrock]=eta_tab[absorber]/40. |
105 |
|
106 |
|
107 |
# material properties: |
108 |
bedrock=0 |
109 |
absorber=1 |
110 |
water=2 |
111 |
sand=3 |
112 |
|
113 |
rho={} |
114 |
rho[bedrock]=8e3 |
115 |
rho[absorber]=rho[bedrock] |
116 |
rho[water]=1e3 |
117 |
rho[sand]=5e3 |
118 |
|
119 |
mu={} |
120 |
mu[bedrock]=1.7e11 |
121 |
mu[absorber]=mu[bedrock] |
122 |
mu[water]=0. |
123 |
mu[sand]=1.5e10 |
124 |
|
125 |
lmbd={} |
126 |
lmbd[bedrock]=1.7e11 |
127 |
lmbd_absorber=lmbd[bedrock] |
128 |
lmbd[water]=1.e9 |
129 |
lmbd[sand]=1.5e10 |
130 |
|
131 |
eta={} |
132 |
eta[absorber]=-log(0.05)*sqrt(rho[absorber]*(lmbd_absorber+2*mu[absorber]))/d_absorber |
133 |
eta[sand]=eta[absorber]/40. |
134 |
eta[water]=eta[absorber]/40. |
135 |
eta[bedrock]=eta[absorber]/40. |
136 |
|
137 |
if output: |
138 |
print "event location = ",xc |
139 |
print "radius of event = ",src_radius |
140 |
print "time of event = ",tc |
141 |
print "length of event = ",tc_length |
142 |
print "direction = ",event |
143 |
|
144 |
t_end=30. |
145 |
dt_write=0.1 |
146 |
|
147 |
|
148 |
def getDomain(): |
149 |
""" |
150 |
this defines a dom as a brick of length and width l and hight h |
151 |
|
152 |
|
153 |
""" |
154 |
global netotal |
155 |
|
156 |
v_p={} |
157 |
for tag in rho_tab.keys(): |
158 |
v_p[tag]=sqrt((2*mu_tab[tag]+lmbd_tab[tag])/rho_tab[tag]) |
159 |
v_p_ref=min(v_p.values()) |
160 |
print "velocities: bedrock = %s, sand = %s, water =%s, absorber =%s, reference =%s"%(v_p[bedrock],v_p[sand],v_p[water],v_p[absorber],v_p_ref) |
161 |
|
162 |
sections={} |
163 |
sections["x"]=[d_absorber, x_sand, l_sand, l_x_water, l_sand, l-x_sand-2*l_sand-l_x_water, d_absorber] |
164 |
sections["y"]=[d_absorber, y_sand, l_sand, l_y_water, l_sand, l-y_sand-2*l_sand-l_y_water, d_absorber] |
165 |
sections["z"]=[d_absorber,h-h_water-h_sand,h_sand,h_water] |
166 |
if output: |
167 |
print "sections x = ",sections["x"] |
168 |
print "sections y = ",sections["y"] |
169 |
print "sections z = ",sections["z"] |
170 |
|
171 |
mats= [ |
172 |
[ [absorber, absorber, absorber, absorber, absorber, absorber, absorber], |
173 |
[absorber, absorber, absorber, absorber, absorber, absorber, absorber], |
174 |
[absorber, absorber, absorber, absorber, absorber, absorber, absorber], |
175 |
[absorber, absorber, absorber, absorber, absorber, absorber, absorber], |
176 |
[absorber, absorber, absorber, absorber, absorber, absorber, absorber], |
177 |
[absorber, absorber, absorber, absorber, absorber, absorber, absorber], |
178 |
[absorber, absorber, absorber, absorber, absorber, absorber, absorber] ], |
179 |
|
180 |
[ [absorber, absorber, absorber, absorber, absorber, absorber, absorber], |
181 |
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber], |
182 |
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber], |
183 |
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber], |
184 |
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber], |
185 |
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber], |
186 |
[absorber, absorber, absorber, absorber, absorber, absorber, absorber] ], |
187 |
|
188 |
[ [absorber, absorber, absorber, absorber, absorber, absorber, absorber], |
189 |
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber], |
190 |
[absorber, bedrock , sand , sand , sand , bedrock , absorber], |
191 |
[absorber, bedrock , sand , sand , sand , bedrock , absorber], |
192 |
[absorber, bedrock , sand , sand , sand , bedrock , absorber], |
193 |
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber], |
194 |
[absorber, absorber, absorber, absorber, absorber, absorber, absorber] ], |
195 |
|
196 |
[ [absorber, absorber, absorber, absorber, absorber, absorber, absorber], |
197 |
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber], |
198 |
[absorber, bedrock , sand , sand , sand , bedrock , absorber], |
199 |
[absorber, bedrock , sand , water , sand , bedrock , absorber], |
200 |
[absorber, bedrock , sand , sand , sand , bedrock , absorber], |
201 |
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber], |
202 |
[absorber, absorber, absorber, absorber, absorber, absorber, absorber] ] ] |
203 |
|
204 |
num_elem={} |
205 |
for d in sections: |
206 |
num_elem[d]=[] |
207 |
for i in range(len(sections[d])): |
208 |
if d=="x": |
209 |
v_p_min=v_p[mats[0][0][i]] |
210 |
for q in range(len(sections["y"])): |
211 |
for r in range(len(sections["z"])): |
212 |
v_p_min=min(v_p[mats[r][q][i]],v_p_min) |
213 |
elif d=="y": |
214 |
v_p_min=v_p[mats[0][i][0]] |
215 |
for q in range(len(sections["x"])): |
216 |
for r in range(len(sections["z"])): |
217 |
v_p_min=min(v_p[mats[r][i][q]],v_p_min) |
218 |
elif d=="z": |
219 |
v_p_min=v_p[mats[i][0][0]] |
220 |
for q in range(len(sections["x"])): |
221 |
for r in range(len(sections["y"])): |
222 |
v_p_min=min(v_p[mats[i][r][q]],v_p_min) |
223 |
num_elem[d].append(max(1,int(sections[d][i] * v_p_ref/v_p_min /resolution+0.5))) |
224 |
|
225 |
ne_x=sum(num_elem["x"]) |
226 |
ne_y=sum(num_elem["y"]) |
227 |
ne_z=sum(num_elem["z"]) |
228 |
netotal=ne_x*ne_y*ne_z |
229 |
if output: print "grid : %s x %s x %s (%s elements)"%(ne_x,ne_y,ne_z,netotal) |
230 |
dom=Brick(ne_x,ne_y,ne_z,l0=o*ne_x,l1=o*ne_y,l2=o*ne_z,order=o) |
231 |
x_old=dom.getX() |
232 |
x_new=0 |
233 |
|
234 |
for d in sections: |
235 |
if d=="x": |
236 |
i=0 |
237 |
f=[1,0,0] |
238 |
if d=="y": |
239 |
i=1 |
240 |
f=[0,1,0] |
241 |
if d=="z": |
242 |
i=2 |
243 |
f=[0,0,1] |
244 |
x=x_old[i] |
245 |
|
246 |
p=origin[d] |
247 |
ne=0 |
248 |
s=0. |
249 |
|
250 |
for i in range(len(sections[d])-1): |
251 |
msk=whereNonPositive(x-o*ne+0.5) |
252 |
s=s*msk + (sections[d][i]/(o*num_elem[d][i])*(x-o*ne)+p)*(1.-msk) |
253 |
ne+=num_elem[d][i] |
254 |
p+=sections[d][i] |
255 |
x_new=x_new + s * f |
256 |
dom.setX(x_new) |
257 |
|
258 |
fs=Function(dom) |
259 |
x=Function(dom).getX() |
260 |
x0=x[0] |
261 |
x1=x[1] |
262 |
x2=x[2] |
263 |
p_z=origin["z"] |
264 |
for i in range(len(mats)): |
265 |
f_z=wherePositive(x2-p_z)*wherePositive(x2-p_z+sections["z"][i]) |
266 |
p_y=origin["y"] |
267 |
for j in range(len(mats[i])): |
268 |
f_y=wherePositive(x1-p_y)*wherePositive(x1-p_z+sections["y"][j]) |
269 |
p_x=origin["x"] |
270 |
for k in range(len(mats[i][j])): |
271 |
f_x=wherePositive(x0-p_x)*wherePositive(x0-p_x+sections["x"][k]) |
272 |
fs.setTags(mats[i][j][k],f_x*f_y*f_z) |
273 |
p_x+=sections["x"][k] |
274 |
p_y+=sections["y"][j] |
275 |
p_z+=sections["z"][i] |
276 |
return dom |
277 |
|
278 |
def getMaterialProperties(dom): |
279 |
rho =Scalar(rho_tab[bedrock],Function(dom)) |
280 |
eta =Scalar(eta_tab[bedrock],Function(dom)) |
281 |
mu =Scalar(mu_tab[bedrock],Function(dom)) |
282 |
lmbd=Scalar(lmbd_tab[bedrock],Function(dom)) |
283 |
tags=Scalar(bedrock,Function(dom)) |
284 |
|
285 |
for tag in rho_tab.keys(): |
286 |
rho.setTaggedValue(tag,rho_tab[tag]) |
287 |
eta.setTaggedValue(tag,eta_tab[tag]) |
288 |
mu.setTaggedValue(tag,mu_tab[tag]) |
289 |
lmbd.setTaggedValue(tag,lmbd_tab[tag]) |
290 |
tags.setTaggedValue(tag,tag) |
291 |
return rho,mu,lmbd,eta |
292 |
|
293 |
def wavePropagation(dom,rho,mu,lmbd,eta): |
294 |
x=Function(dom).getX() |
295 |
# ... open new PDE ... |
296 |
mypde=LinearPDE(dom) |
297 |
mypde.setSolverMethod(LinearPDE.LUMPING) |
298 |
k=kronecker(Function(dom)) |
299 |
mypde.setValue(D=k*rho) |
300 |
|
301 |
dt=(1./5.)*inf(dom.getSize()/sqrt((2*mu+lmbd)/rho)) |
302 |
if output: print "time step size = ",dt |
303 |
# ... set initial values .... |
304 |
n=0 |
305 |
t=0 |
306 |
t_write=0. |
307 |
n_write=0 |
308 |
# initial value of displacement at point source is constant (U0=0.01) |
309 |
# for first two time steps |
310 |
u=Vector(0.,Solution(dom)) |
311 |
v=Vector(0.,Solution(dom)) |
312 |
a=Vector(0.,Solution(dom)) |
313 |
a2=Vector(0.,Solution(dom)) |
314 |
v=Vector(0.,Solution(dom)) |
315 |
|
316 |
starttime = time.clock() |
317 |
while t<t_end and n<n_end: |
318 |
if output: print n+1,"-th time step t ",t+dt," max u and F: ",Lsup(u), |
319 |
# prediction: |
320 |
u_pr=u+dt*v+(dt**2/2)*a+(dt**3/6)*a2 |
321 |
v_pr=v+dt*a+(dt**2/2)*a2 |
322 |
a_pr=a+dt*a2 |
323 |
# ... get current stress .... |
324 |
eps=symmetric(grad(u_pr)) |
325 |
stress=lmbd*trace(eps)*k+2*mu*eps |
326 |
# ... force due to event: |
327 |
if abs(t-tc)<5*tc_length: |
328 |
F=exp(-((t-tc)/tc_length)**2)*exp(-(length(x-xc)/src_radius)**2)*event |
329 |
if output: print Lsup(F) |
330 |
else: |
331 |
if output: print 0. |
332 |
# ... get new acceleration .... |
333 |
mypde.setValue(X=-stress,Y=F-eta*v_pr) |
334 |
a=mypde.getSolution() |
335 |
# ... get new displacement ... |
336 |
da=a-a_pr |
337 |
u=u_pr+(dt**2/12.)*da |
338 |
v=v_pr+(5*dt/12.)*da |
339 |
a2+=da/dt |
340 |
# ... save current acceleration in units of gravity and displacements |
341 |
if output: |
342 |
if t>=t_write: |
343 |
saveVTK(WORKDIR+"disp.%i.vtu"%n_write,displacement=u, amplitude=length(u)) |
344 |
t_write+=dt_write |
345 |
n_write+=1 |
346 |
t+=dt |
347 |
n+=1 |
348 |
|
349 |
endtime = time.clock() |
350 |
totaltime = endtime-starttime |
351 |
global netotal |
352 |
print ">>number of elements: %s, total time: %s, per time step: %s <<"%(netotal,totaltime,totaltime/n) |
353 |
if __name__ =="__main__": |
354 |
dom=getDomain() |
355 |
rho,mu,lmbd,eta=getMaterialProperties(dom) |
356 |
wavePropagation(dom,rho,mu,lmbd,eta) |