1 |
""" |
2 |
seismic wave propagation |
3 |
|
4 |
@var __author__: name of author |
5 |
@var __licence__: licence agreement |
6 |
@var __url__: url entry point on documentation |
7 |
@var __version__: version |
8 |
@var __date__: date of the version |
9 |
""" |
10 |
|
11 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
12 |
http://www.access.edu.au |
13 |
Primary Business: Queensland, Australia""" |
14 |
__license__="""Licensed under the Open Software License version 3.0 |
15 |
http://www.opensource.org/licenses/osl-3.0.php""" |
16 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
17 |
__url__="http://www.iservo.edu.au/esys/escript" |
18 |
__version__="$Revision$" |
19 |
__date__="$Date$" |
20 |
|
21 |
from esys.escript import * |
22 |
from esys.escript.linearPDEs import LinearPDE |
23 |
from esys.finley import Brick |
24 |
|
25 |
resolution=4000. # number of elements per m |
26 |
l=80000. # width and length m |
27 |
h=30000. # height in m |
28 |
|
29 |
rho_bedrock=8e3 |
30 |
mu_bedrock=1.7e11 |
31 |
lambda_bedrock=1.7e11 |
32 |
|
33 |
l_x_water=10000 # length of water in x |
34 |
l_y_water=10000 # length of water in y |
35 |
h_water=max(2000,resolution) # depth of water region |
36 |
|
37 |
water_tag=2 |
38 |
rho_water=1e3 |
39 |
mu_water=0. |
40 |
lambda_water=1.e9 |
41 |
|
42 |
d0_sand=10000 # thickness of sand region on surface |
43 |
d_sand=max(2000,resolution) # thickness of sand layer under the water |
44 |
|
45 |
sand_tag=3 |
46 |
rho_sand=5e3 |
47 |
mu_sand=1.5e10 |
48 |
lambda_sand=1.5e10 |
49 |
|
50 |
|
51 |
# location and geometrical size of event: |
52 |
xc=[30000.,40000.,10000.] |
53 |
src_radius = 0.1*h |
54 |
# direction of event: |
55 |
event=numarray.array([1.,0.,0.])*1.e6 |
56 |
# time and length of the event |
57 |
tc_length=2. |
58 |
tc=sqrt(5.*tc_length) |
59 |
print "event location = ",xc |
60 |
print "radius of event = ",src_radius |
61 |
print "time of event = ",tc |
62 |
print "length of event = ",tc_length |
63 |
print "direction = ",event |
64 |
|
65 |
t_end=22. |
66 |
|
67 |
def getDomain(): |
68 |
""" |
69 |
this defines a dom as a brick of length and width l and hight h |
70 |
|
71 |
|
72 |
""" |
73 |
ne_l=int(l/resolution+0.5) |
74 |
ne_h=int(h/resolution+0.5) |
75 |
print "grid : %s x %s x %s"%(ne_l,ne_l,ne_h) |
76 |
dom=Brick(ne_l,ne_l,ne_h,l0=l,l1=l,l2=h,order=1) |
77 |
|
78 |
fs=Function(dom) |
79 |
x=Function(dom).getX() |
80 |
fs.setTags(sand_tag,wherePositive(x[0]-(l-l_x_water-d0_sand)) \ |
81 |
*wherePositive(x[1]-(l-l_y_water-d0_sand)) \ |
82 |
*wherePositive(x[2]-(h-h_water-d_sand))) |
83 |
fs.setTags(water_tag,wherePositive(x[0]-(l-l_x_water)) \ |
84 |
*wherePositive(x[1]-(l-l_y_water)) \ |
85 |
*wherePositive(x[2]-(h-h_water))) |
86 |
return dom |
87 |
|
88 |
def getMaterialProperties(dom): |
89 |
rho =Scalar(rho_bedrock,Function(dom)) |
90 |
rho.setTaggedValue(sand_tag,rho_sand) |
91 |
rho.setTaggedValue(water_tag,rho_water) |
92 |
|
93 |
lame_mu =Scalar(mu_bedrock,Function(dom)) |
94 |
lame_mu.setTaggedValue(sand_tag,mu_sand) |
95 |
lame_mu.setTaggedValue(water_tag,mu_water) |
96 |
|
97 |
lame_lambda=Scalar(lambda_bedrock,Function(dom)) |
98 |
lame_lambda.setTaggedValue(sand_tag,lambda_sand) |
99 |
lame_lambda.setTaggedValue(water_tag,lambda_water) |
100 |
|
101 |
return rho,lame_mu,lame_lambda |
102 |
|
103 |
|
104 |
def wavePropagation(dom,rho,lame_mu,lame_lambda): |
105 |
x=Function(dom).getX() |
106 |
# ... open new PDE ... |
107 |
mypde=LinearPDE(dom) |
108 |
mypde.setSolverMethod(LinearPDE.LUMPING) |
109 |
k=kronecker(Function(dom)) |
110 |
mypde.setValue(D=k*rho) |
111 |
|
112 |
v_p=sqrt((2*lame_mu+lame_lambda)/rho) |
113 |
print "v_p=",v_p |
114 |
v_s=sqrt(lame_mu/rho) |
115 |
print "v_s=",v_s |
116 |
dt=(1./5.)*inf(dom.getSize()/v_p) |
117 |
print "time step size = ",dt |
118 |
# ... set initial values .... |
119 |
n=0 |
120 |
t=0 |
121 |
# initial value of displacement at point source is constant (U0=0.01) |
122 |
# for first two time steps |
123 |
u =Vector(0.,Solution(dom)) |
124 |
u_last=Vector(0.,Solution(dom)) |
125 |
|
126 |
while t<t_end: |
127 |
print n+1,"-th time step t ",t+dt," max u and F: ",Lsup(u), |
128 |
# ... get current stress .... |
129 |
eps=symmetric(grad(u)) |
130 |
stress=lame_lambda*trace(eps)*k+2*lame_mu*eps |
131 |
# ... force due to event: |
132 |
F=exp(-((t-tc)/tc_length)**2)*exp(-(length(x-xc)/src_radius)**2)*event |
133 |
print Lsup(F) |
134 |
# ... get new acceleration .... |
135 |
mypde.setValue(X=-stress,Y=F) |
136 |
a=mypde.getSolution() |
137 |
# ... get new displacement ... |
138 |
u_new=2*u-u_last+dt**2*a |
139 |
# ... shift displacements .... |
140 |
u_last,u=u,u_new |
141 |
# ... save current acceleration in units of gravity and displacements |
142 |
if n%10==0: saveVTK("disp.%i.vtu"%(n/10),displacement=u, amplitude=length(u)) |
143 |
|
144 |
t+=dt |
145 |
n+=1 |
146 |
|
147 |
if __name__ =="__main__": |
148 |
dom=getDomain() |
149 |
rho,lame_mu,lame_lambda=getMaterialProperties(dom) |
150 |
wavePropagation(dom,rho,lame_mu,lame_lambda) |