1 |
# $Id$ |
2 |
|
3 |
""" |
4 |
calculation of the stress distribution around a fault from the slip on the fault |
5 |
|
6 |
e.g. use slip_stress_mesh.py to generate mesh |
7 |
|
8 |
@var __author__: name of author |
9 |
@var __copyright__: copyrights |
10 |
@var __license__: licence agreement |
11 |
@var __url__: url entry point on documentation |
12 |
@var __version__: version |
13 |
@var __date__: date of the version |
14 |
""" |
15 |
|
16 |
__author__="Lutz Gross, Louise Kettle" |
17 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
18 |
http://www.access.edu.au |
19 |
Primary Business: Queensland, Australia""" |
20 |
__license__="""Licensed under the Open Software License version 3.0 |
21 |
http://www.opensource.org/licenses/osl-3.0.php""" |
22 |
__url__="http://www.iservo.edu.au/esys" |
23 |
__version__="$Revision$" |
24 |
__date__="$Date$" |
25 |
|
26 |
from esys.escript import * |
27 |
from esys.escript.pdetools import SaddlePointProblem |
28 |
from esys.escript.linearPDEs import LinearPDE |
29 |
from esys.finley import ReadMesh |
30 |
|
31 |
|
32 |
rho=0. |
33 |
lam_lmbd=1.7e11 |
34 |
lam_mu=1.7e11 |
35 |
g=9.81 |
36 |
fstart = [50000.0, 44444.444444444445, 11666.666666666666] |
37 |
fend = [50000.0, 50000.0, -13333.333333333336] |
38 |
fstart = [50000.0, 44444.444444444445, 11666.666666666666] |
39 |
fend = [50000.0, 55555.555555555555, -11666.666666666668] |
40 |
|
41 |
|
42 |
|
43 |
class SlippingFault(SaddlePointProblem): |
44 |
""" |
45 |
simple example of saddle point problem |
46 |
""" |
47 |
def __init__(self,domain): |
48 |
super(SlippingFault, self).__init__(self) |
49 |
self.domain=domain |
50 |
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim()) |
51 |
self.__pde_u.setSymmetryOn() |
52 |
|
53 |
def initialize(self,density=1.,lmbd=1., mu=1., traction=Data(),fixed_u_mask=Data(), slip=0.): |
54 |
d=self.domain.getDim() |
55 |
self.slip=slip |
56 |
A =self.__pde_u.createCoefficientOfGeneralPDE("A") |
57 |
for i in range(self.domain.getDim()): |
58 |
for j in range(self.domain.getDim()): |
59 |
A[i,j,j,i] += mu |
60 |
A[i,j,i,j] += mu |
61 |
A[i,i,j,j] += lmbd |
62 |
self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=-kronecker(Function(self.domain))[d-1]*g*density,y=traction) |
63 |
|
64 |
def inner(self,p0,p1): |
65 |
return integrate(inner(p0,p1),FunctionOnContactZero(self.domain)) |
66 |
|
67 |
def solve_f(self,u,p,tol=1.e-8): |
68 |
self.__pde_u.setTolerance(tol) |
69 |
self.__pde_u.setValue(y_contact=p) |
70 |
print "p:",inf(p),sup(p) |
71 |
print "u:",inf(u),sup(u) |
72 |
self.__pde_u.setValue(y_contact=p) |
73 |
return self.__pde_u.getSolution() |
74 |
|
75 |
def solve_g(self,u,tol=1.e-8): |
76 |
dp=-(self.slip-jump(u))*lam_lmbd/FunctionOnContactZero(self.domain).getSize() |
77 |
print dp |
78 |
return dp |
79 |
|
80 |
|
81 |
dom=ReadMesh("meshfault3D.fly",integrationOrder=-1) |
82 |
prop=SlippingFault(dom) |
83 |
d=dom.getDim() |
84 |
x=dom.getX()[0] |
85 |
# x=dom.getX()[d-1] |
86 |
mask=whereZero(x-inf(x))*numarray.ones((d,)) |
87 |
s=numarray.array([0.,1.,1.]) |
88 |
x=FunctionOnContactZero(dom).getX() |
89 |
s=numarray.array([0.,1.,1.]) |
90 |
for i in range(3): |
91 |
d=fend[i]-fstart[i] |
92 |
if d>0: |
93 |
q=(x[i]-fstart[i])/d |
94 |
s=q*(1-q)*4*s |
95 |
elif d<0: |
96 |
q=(x[i]-fend[i])/d |
97 |
s=q*(1-q)*4*s |
98 |
u0=Vector(0.,Solution(dom)) |
99 |
p0=Vector(1.,FunctionOnContactZero(dom)) |
100 |
prop.initialize(fixed_u_mask=mask,slip=Data(s,FunctionOnContactZero(dom)), density=rho,lmbd=lam_lmbd, mu=lam_mu) |
101 |
u,p=prop.solve(u0,p0,iter_max=50,tolerance=0.1,accepted_reduction=0.99) |
102 |
saveVTK("dis.xml",u=u) |
103 |
saveVTK("fault.xml",sigma=p,s=jump(u)) |