1 |
# $Id$ |
2 |
|
3 |
""" |
4 |
calculation of the stress distribution around a fault from the slip on the fault |
5 |
|
6 |
@var __author__: name of author |
7 |
@var __copyright__: copyrights |
8 |
@var __license__: licence agreement |
9 |
@var __url__: url entry point on documentation |
10 |
@var __version__: version |
11 |
@var __date__: date of the version |
12 |
""" |
13 |
|
14 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
15 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
16 |
http://www.access.edu.au |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="http://www.iservo.edu.au/esys" |
21 |
__version__="$Revision$" |
22 |
__date__="$Date$" |
23 |
|
24 |
from esys.escript import * |
25 |
from esys.escript.pdetools import SaddlePointProblem |
26 |
from esys.escript.linearPDEs import LinearPDE |
27 |
from esys.finley import Rectangle |
28 |
|
29 |
|
30 |
rho=1. |
31 |
lam_lmbd=1. |
32 |
lam_mu=1. |
33 |
g=9.81 |
34 |
|
35 |
class SlippingFault(SaddlePointProblem): |
36 |
""" |
37 |
simple example of saddle point problem |
38 |
""" |
39 |
def __init__(self,domain): |
40 |
super(SlippingFault, self).__init__(self) |
41 |
self.domain=domain |
42 |
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim()) |
43 |
self.__pde_u.setSymmetryOn() |
44 |
|
45 |
def initialize(self,density=1.,lmbd=1., mu=1., traction=Data(),fixed_u_mask=Data(), slip=0.): |
46 |
d=self.domain.getDim() |
47 |
self.slip=slip |
48 |
A =self.__pde_u.createCoefficientOfGeneralPDE("A") |
49 |
for i in range(self.domain.getDim()): |
50 |
for j in range(self.domain.getDim()): |
51 |
A[i,j,j,i] += mu |
52 |
A[i,j,i,j] += mu |
53 |
A[i,i,j,j] += lmbd |
54 |
self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=-kronecker(Function(self.domain))[d-1]*g*density,y=traction) |
55 |
|
56 |
def inner(self,p0,p1): |
57 |
return integrate(p0*p1,FunctionOnContactZero(self.__pde_p.getDomain())) |
58 |
|
59 |
def solve_f(self,u,p,tol=1.e-8): |
60 |
self.__pde_u.setTolerance(tol) |
61 |
self.__pde_u.setValue(y_contact=p) |
62 |
return self.__pde_u.getSolution() |
63 |
|
64 |
def solve_g(self,u,tol=1.e-8): |
65 |
dp=self.slip-jump(u) |
66 |
return dp |
67 |
|
68 |
|
69 |
s=numarray.array([0.,1.,1.]) |
70 |
NE=3 |
71 |
dom=Rectangle(NE,NE,order=2) |
72 |
prop=SlippingFault(dom) |
73 |
d=dom.getDim() |
74 |
x=dom.getX()[d-1] |
75 |
mask=whereZero(x-inf(x))*numarray.ones((d,)) |
76 |
u0=Vector(0.,Solution(dom)) |
77 |
p0=Vector(0.,FunctionOnContactZero(dom)) |
78 |
prop.initialize(fixed_u_mask=mask,slip=s, density=rho,lmbd=lam_lmbd, mu=lam_mu) |
79 |
u,p=prop.solve(u0,p0,relaxation=1.,iter_max=50,tolerance=0.01) |
80 |
saveVTK("dis.xml",u=u) |
81 |
saveVTK("fault.xml",sigma=p,s=jump(u)) |