# Contents of /trunk/finley/test/python/slip_stress.py

Revision 892 - (show annotations)
Wed Nov 8 06:14:29 2006 UTC (15 years, 7 months ago) by gross
File MIME type: text/x-python
File size: 3389 byte(s)

 1 # \$Id\$ 2 3 """ 4 calculation of the stress distribution around a fault from the slip on the fault 5 6 e.g. use slip_stress_mesh.py to generate mesh 7 8 @var __author__: name of author 9 @var __copyright__: copyrights 10 @var __license__: licence agreement 11 @var __url__: url entry point on documentation 12 @var __version__: version 13 @var __date__: date of the version 14 """ 15 16 __author__="Lutz Gross, Louise Kettle" 17 __copyright__=""" Copyright (c) 2006 by ACcESS MNRF 18 19 Primary Business: Queensland, Australia""" 20 __license__="""Licensed under the Open Software License version 3.0 21 22 __url__= 23 __version__="\$Revision\$" 24 __date__="\$Date\$" 25 26 from esys.escript import * 27 from esys.escript.pdetools import SaddlePointProblem 28 from esys.escript.linearPDEs import LinearPDE 29 from esys.finley import ReadMesh 30 31 32 rho=0. 33 lam_lmbd=1.7e11 34 lam_mu=1.7e11 35 g=9.81 36 fstart = [50000.0, 44444.444444444445, 11666.666666666666] 37 fend = [50000.0, 50000.0, -13333.333333333336] 38 fstart = [50000.0, 44444.444444444445, 11666.666666666666] 39 fend = [50000.0, 55555.555555555555, -11666.666666666668] 40 41 42 43 class SlippingFault(SaddlePointProblem): 44 """ 45 simple example of saddle point problem 46 """ 47 def __init__(self,domain): 48 super(SlippingFault, self).__init__(self) 49 self.domain=domain 50 self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim()) 51 self.__pde_u.setSymmetryOn() 52 53 def initialize(self,density=1.,lmbd=1., mu=1., traction=Data(),fixed_u_mask=Data(), slip=0.): 54 d=self.domain.getDim() 55 self.slip=slip 56 A =self.__pde_u.createCoefficientOfGeneralPDE("A") 57 for i in range(self.domain.getDim()): 58 for j in range(self.domain.getDim()): 59 A[i,j,j,i] += mu 60 A[i,j,i,j] += mu 61 A[i,i,j,j] += lmbd 62 self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=-kronecker(Function(self.domain))[d-1]*g*density,y=traction) 63 64 def inner(self,p0,p1): 65 return integrate(inner(p0,p1),FunctionOnContactZero(self.domain)) 66 67 def solve_f(self,u,p,tol=1.e-8): 68 self.__pde_u.setTolerance(tol) 69 self.__pde_u.setValue(y_contact=p) 70 print "p:",inf(p),sup(p) 71 print "u:",inf(u),sup(u) 72 self.__pde_u.setValue(y_contact=p) 73 return self.__pde_u.getSolution() 74 75 def solve_g(self,u,tol=1.e-8): 76 dp=-(self.slip-jump(u))*lam_lmbd/FunctionOnContactZero(self.domain).getSize() 77 print dp 78 return dp 79 80 81 dom=ReadMesh("meshfault3D.fly",integrationOrder=-1) 82 prop=SlippingFault(dom) 83 d=dom.getDim() 84 x=dom.getX()[0] 85 # x=dom.getX()[d-1] 86 mask=whereZero(x-inf(x))*numarray.ones((d,)) 87 s=numarray.array([0.,1.,1.]) 88 x=FunctionOnContactZero(dom).getX() 89 s=numarray.array([0.,1.,1.]) 90 for i in range(3): 91 d=fend[i]-fstart[i] 92 if d>0: 93 q=(x[i]-fstart[i])/d 94 s=q*(1-q)*4*s 95 elif d<0: 96 q=(x[i]-fend[i])/d 97 s=q*(1-q)*4*s 98 u0=Vector(0.,Solution(dom)) 99 p0=Vector(1.,FunctionOnContactZero(dom)) 100 prop.initialize(fixed_u_mask=mask,slip=Data(s,FunctionOnContactZero(dom)), density=rho,lmbd=lam_lmbd, mu=lam_mu) 101 u,p=prop.solve(u0,p0,iter_max=50,tolerance=0.1,accepted_reduction=0.99) 102 saveVTK("dis.xml",u=u) 103 saveVTK("fault.xml",sigma=p,s=jump(u))