1 |
# $Id$ |
2 |
|
3 |
""" |
4 |
|
5 |
generates finley mesh simple vertical fault |
6 |
|
7 |
THIS CODE CREATES RICH CONTACT ELEMENTS AND RICH FACE ELEMENTS |
8 |
with fix for contact elements at FAULT ENDS |
9 |
|
10 |
|
11 |
@var __author__: name of author |
12 |
@var __copyright__: copyrights |
13 |
@var __license__: licence agreement |
14 |
@var __url__: url entry point on documentation |
15 |
@var __version__: version |
16 |
@var __date__: date of the version |
17 |
""" |
18 |
|
19 |
__author__="Louise Kettle" |
20 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
21 |
http://www.access.edu.au |
22 |
Primary Business: Queensland, Australia""" |
23 |
__license__="""Licensed under the Open Software License version 3.0 |
24 |
http://www.opensource.org/licenses/osl-3.0.php""" |
25 |
__url__="http://www.iservo.edu.au/esys" |
26 |
__version__="$Revision$" |
27 |
__date__="$Date$" |
28 |
|
29 |
from esys.escript import * |
30 |
from numarray import zeros,Float,array,size |
31 |
|
32 |
#... generate domain ... |
33 |
ne = 10 |
34 |
width = 200000. |
35 |
height = 30000. |
36 |
|
37 |
def faultL(l0,l1, l2,ne0, ne1, ne2,contact=False,xstart=zeros(3),xend=zeros(3)): |
38 |
# if contact = true then there is a fault surface |
39 |
# xstart is the co-ordinates of start of fault |
40 |
# xend is the co-ordinates at end of fault |
41 |
meshfaultL=open('meshfault3D.fly','w') |
42 |
|
43 |
FaultError1="ERROR: fault defined on or too close to an outer surface" |
44 |
FaultError2="ERROR: the mesh is too coarse for fault" |
45 |
|
46 |
N0=ne0+1 |
47 |
N1=ne1+1 |
48 |
N2=ne2+1 |
49 |
if (N0<=N1 and N0<=N2): |
50 |
if (N1 <= N2): |
51 |
M0=1 |
52 |
M1=N0 |
53 |
M2=N0*N1 |
54 |
M0i=1 |
55 |
M1i=ne0 |
56 |
M2i=ne0*ne1 |
57 |
else: |
58 |
M0=1 |
59 |
M2=N0 |
60 |
M1=N0*N2 |
61 |
M0i=1 |
62 |
M2i=ne0 |
63 |
M1i=ne0*ne2 |
64 |
elif (N1<=N2 and N1<=N0): |
65 |
if (N2 <= N0): |
66 |
M1=1 |
67 |
M2=N1 |
68 |
M0=N2*N1 |
69 |
M1i=1 |
70 |
M2i=ne1 |
71 |
M0i=ne2*ne1 |
72 |
else: |
73 |
M1=1 |
74 |
M0=N1 |
75 |
M2=N1*N0 |
76 |
M1i=1 |
77 |
M0i=ne1 |
78 |
M2i=ne0*ne1 |
79 |
else: |
80 |
if (N0 <= N1): |
81 |
M2=1 |
82 |
M0=N2 |
83 |
M1=N2*N0 |
84 |
M2i=1 |
85 |
M0i=ne2 |
86 |
M1i=ne0*ne2 |
87 |
else: |
88 |
M2=1 |
89 |
M1=N2 |
90 |
M0=N1*N2 |
91 |
M2i=1 |
92 |
M1i=ne2 |
93 |
M0i=ne2*ne1 |
94 |
|
95 |
dim=3 |
96 |
Element_numNodes=8 |
97 |
Element_Num=ne0*ne1*ne2 |
98 |
if contact==False: |
99 |
numNodes=N0*N1*N2 |
100 |
|
101 |
else: |
102 |
# define double (contact element) nodes on interior of fault |
103 |
i0start=round(xstart[0]*ne0/l0) |
104 |
i1start=round(xstart[1]*ne1/l1) |
105 |
i2start=round(xstart[2]*ne2/l2) |
106 |
i0end=round(xend[0]*ne0/l0) |
107 |
i1end=round(xend[1]*ne1/l1) |
108 |
i2end=round(xend[2]*ne2/l2) |
109 |
n0double=int(i0end)-int(i0start) |
110 |
n1double=int(i1end)-int(i1start) |
111 |
n2double=int(i2end)-int(i2start) |
112 |
if (i0start == 0) or (i1start==0) or (i2start==0): |
113 |
raise FaultError1 |
114 |
|
115 |
if (i0end == ne0) or (i1end==ne1) or (i2end==ne2): |
116 |
raise FaultError1 |
117 |
|
118 |
if n0double==0: |
119 |
numNodes=N0*N1*N2+(n1double-1)*(n2double-1) |
120 |
|
121 |
elif n1double==0: |
122 |
numNodes=N0*N1*N2+(n0double-1)*(n2double-1) |
123 |
|
124 |
elif n2double==0: |
125 |
numNodes=N0*N1*N2+(n0double-1)*(n1double-1) |
126 |
|
127 |
# define nodes for normal elements |
128 |
# there are N0*N1*N2 normal nodes |
129 |
|
130 |
Node=zeros([3,numNodes],Float) |
131 |
Node_ref=zeros(numNodes,Float) |
132 |
Node_DOF=zeros(numNodes,Float) |
133 |
Node_tag=zeros(numNodes,Float) |
134 |
|
135 |
meshfaultL.write("KettleFault\n") |
136 |
#print 'Nodes' |
137 |
meshfaultL.write("%dD-nodes %d\n"%(dim,numNodes)) |
138 |
|
139 |
for i2 in range(N2): |
140 |
for i1 in range (N1): |
141 |
for i0 in range(N0): |
142 |
k=M0*i0+M1*i1+M2*i2; |
143 |
Node_ref[k]=i0 + N0*i1 + N0*N1*i2 |
144 |
# no periodic boundary conditions |
145 |
Node_DOF[k]=Node_ref[k] |
146 |
Node_tag[k]=0 |
147 |
Node[0][k]=(i0)*l0/(N0-1) |
148 |
Node[1][k]=(i1)*l1/(N1-1) |
149 |
Node[2][k]=(i2)*l2/(N2-1)-height |
150 |
|
151 |
# define double nodes on fault (will have same coordinates as some of nodes already defined) |
152 |
# only get double nodes on INTERIOR of fault |
153 |
|
154 |
if contact==True: |
155 |
Fault_NE=N0*N1*N2 |
156 |
if n0double==0: |
157 |
if(n1double<=n2double): |
158 |
M1f=1 |
159 |
M2f=n1double-1 |
160 |
else: |
161 |
M2f=1 |
162 |
M1f=n2double-1 |
163 |
|
164 |
for i2 in range(n2double-1): |
165 |
for i1 in range(n1double-1): |
166 |
k=Fault_NE+M1f*i1+M2f*i2 |
167 |
Node_ref[k]=Fault_NE + i1 + (n1double-1)*i2 |
168 |
Node_DOF[k]=Node_ref[k] |
169 |
Node_tag[k]=1 |
170 |
Node[0][k]=i0start*l0/ne0 |
171 |
Node[1][k]=i1start*l1/ne1 + (i1+1)*l1/ne1 |
172 |
Node[2][k]=i2start*l2/ne2 + (i2+1)*l2/ne2 -height |
173 |
|
174 |
# elif n1double==0: |
175 |
# elif n2double==0: |
176 |
|
177 |
# write nodes to file |
178 |
for i in range(numNodes): |
179 |
meshfaultL.write("%d %d %d"%(Node_ref[i],Node_DOF[i],Node_tag[i])) |
180 |
for j in range(dim): |
181 |
meshfaultL.write(" %lf"%Node[j][i]) |
182 |
meshfaultL.write("\n") |
183 |
|
184 |
|
185 |
|
186 |
|
187 |
# defining interior elements |
188 |
# there are ne0*ne1*ne2 interior elements |
189 |
|
190 |
Element_Nodes=zeros([8,ne0*ne1*ne2],Float) |
191 |
Element_ref=zeros(ne0*ne1*ne2,Float) |
192 |
Element_tag=zeros(ne0*ne1*ne2,Float) |
193 |
|
194 |
#print 'Interior elements' |
195 |
|
196 |
for i2 in range(ne2): |
197 |
for i1 in range (ne1): |
198 |
for i0 in range(ne0): |
199 |
k=i0 + ne0*i1 + ne0*ne1*i2; |
200 |
# define corner node (node0) |
201 |
node0=i0 + N0*i1 + N0*N1*i2; |
202 |
Element_ref[k]=k |
203 |
Element_tag[k]=0 |
204 |
# for hex8 the interior elements are specified by 8 nodes |
205 |
Element_Nodes[0][k]=node0; |
206 |
Element_Nodes[1][k]=node0+1; |
207 |
Element_Nodes[2][k]=node0+N0+1; |
208 |
Element_Nodes[3][k]=node0+N0; |
209 |
Element_Nodes[4][k]=node0+N0*N1; |
210 |
Element_Nodes[5][k]=node0+N0*N1+1; |
211 |
Element_Nodes[6][k]=node0+N0*N1+N0+1; |
212 |
Element_Nodes[7][k]=node0+N0*N1+N0; |
213 |
|
214 |
if contact==True: |
215 |
if n0double==0: |
216 |
x0s= i0start*l0/ne0 |
217 |
x1s= i1start*l1/ne1 |
218 |
x2s= i2start*l2/ne2 |
219 |
x0e= i0end*l0/ne0 |
220 |
x1e= i1end*l1/ne1 |
221 |
x2e= i2end*l2/ne2 |
222 |
#print x0s,x1s,x2s,x0e,x1e,x2e |
223 |
|
224 |
if (n1double==1) or (n2double==1): |
225 |
raise FaultError2 |
226 |
for i2 in range(n2double): |
227 |
for i1 in range(n1double): |
228 |
# here the coordinates of kfault and kold are the same |
229 |
# Ref for fault node (only on interior nodes of fault): |
230 |
if (i1>0) and (i2>0): |
231 |
kfault=Fault_NE+M1f*(i1-1.)+M2f*(i2-1.) |
232 |
#print kfault, Node[0][kfault],Node[1][kfault],Node[2][kfault] |
233 |
else: |
234 |
kfault=0. |
235 |
# determine bottom corner node of each element |
236 |
|
237 |
# Ref for normal interior node: |
238 |
kold=int(M0*i0start+M1*(i1start + i1) + M2*(i2start+i2)) |
239 |
#print kold, Node[0][kold],Node[1][kold],Node[2][kold] |
240 |
# Ref for interior element: |
241 |
kint=int(M0i*i0start + M1i*(i1start+i1) + M2i*(i2start+i2)) |
242 |
#print kint, Element_Nodes[0][kint] |
243 |
|
244 |
x0= (i0start)*l0/ne0 |
245 |
x1= (i1start+i1)*l1/ne1 |
246 |
x2= (i2start+i2)*l2/ne2 |
247 |
|
248 |
# for x0 > xstart we need to overwrite old Nodes in interior element references |
249 |
# with fault nodes: |
250 |
|
251 |
# for the interior elements with x1<x1s and x2<x2s the only nodes need changing |
252 |
# are on the fault: |
253 |
if (i1==0) and (i2==0): |
254 |
# nearest fault node: |
255 |
kfaultref=int(Fault_NE+M1f*i1+M2f*i2) |
256 |
elif (i1==0): |
257 |
# nearest fault node |
258 |
kfaultref=int(Fault_NE+i1*M1f+(i2-1.)*(M2f)) |
259 |
elif (i2==0): |
260 |
# nearest fault node |
261 |
kfaultref=int(Fault_NE+(i1-1.)*M1f + i2*M2f) |
262 |
else: |
263 |
# looking at element with fault node on bottom corner |
264 |
kfaultref=int(kfault) |
265 |
|
266 |
#print x0,x1,x2 |
267 |
#print kold, Node[0][kold],Node[1][kold],Node[2][kold] |
268 |
#print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref] |
269 |
|
270 |
# overwrite 4 outer corner elements of fault (only one node changed) |
271 |
if (i1==0 and i2==0): |
272 |
Element_Nodes[7][kint]=kfaultref |
273 |
|
274 |
elif (i1==0 and i2==n2double-1): |
275 |
Element_Nodes[3][kint]=kfaultref |
276 |
|
277 |
elif (i1==n1double-1 and i2==0): |
278 |
Element_Nodes[4][kint]=kfaultref |
279 |
|
280 |
elif (i1==n1double-1 and i2==n2double-1): |
281 |
Element_Nodes[0][kint]=kfaultref |
282 |
|
283 |
# overwrite 4 sides of fault (only 2 nodes changed) |
284 |
elif (i1==0): |
285 |
Element_Nodes[3][kint]=kfaultref |
286 |
kfaultref1=int(kfaultref+M2f) |
287 |
Element_Nodes[7][kint]=kfaultref1 |
288 |
|
289 |
elif (i1==n1double-1): |
290 |
Element_Nodes[0][kint]=kfaultref |
291 |
kfaultref1=kfaultref+M2f |
292 |
Element_Nodes[4][kint]=kfaultref1 |
293 |
|
294 |
elif (i2==0): |
295 |
Element_Nodes[4][kint]=kfaultref |
296 |
kfaultref1=kfaultref+M1f |
297 |
Element_Nodes[7][kint]=kfaultref1 |
298 |
|
299 |
elif (i2==n2double-1): |
300 |
#print i1 |
301 |
#nodecheck=int(Element_Nodes[0][kint] ) |
302 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
303 |
#print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref] |
304 |
|
305 |
Element_Nodes[0][kint]=kfaultref |
306 |
kfaultref1=kfaultref+M1f |
307 |
|
308 |
#nodecheck=int(Element_Nodes[3][kint] ) |
309 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
310 |
#print kfaultref1, Node[0][kfaultref1],Node[1][kfaultref1],Node[2][kfaultref1] |
311 |
|
312 |
Element_Nodes[3][kint]=kfaultref1 |
313 |
|
314 |
|
315 |
# overwrite interior fault elements (4 nodes changed) |
316 |
else: |
317 |
#print i1,i2 |
318 |
#nodecheck=int(Element_Nodes[0][kint] ) |
319 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
320 |
#print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref] |
321 |
|
322 |
Element_Nodes[0][kint]=kfaultref |
323 |
#if (x1<x1e and x2<x2e): |
324 |
kfaultref1=kfaultref+M1f |
325 |
kfaultref2=kfaultref+M2f |
326 |
kfaultref3=kfaultref+M1f+M2f |
327 |
|
328 |
nodecheck=int(Element_Nodes[3][kint] ) |
329 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
330 |
#print kfaultref1, Node[0][kfaultref1],Node[1][kfaultref1],Node[2][kfaultref1] |
331 |
|
332 |
nodecheck=int(Element_Nodes[4][kint] ) |
333 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
334 |
#print kfaultref2, Node[0][kfaultref2],Node[1][kfaultref2],Node[2][kfaultref2] |
335 |
|
336 |
nodecheck=int(Element_Nodes[7][kint] ) |
337 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
338 |
#print kfaultref3, Node[0][kfaultref3],Node[1][kfaultref3],Node[2][kfaultref3] |
339 |
|
340 |
|
341 |
Element_Nodes[3][kint]=kfaultref1 |
342 |
Element_Nodes[4][kint]=kfaultref2 |
343 |
Element_Nodes[7][kint]=kfaultref3 |
344 |
#elif x1<x1e: |
345 |
# kfaultref1=kfaultref+M1f |
346 |
# Element_Nodes[3][kint]=kfaultref1 |
347 |
#elif x2<x2e: |
348 |
# kfaultref2=kfaultref+M2f |
349 |
# Element_Nodes[4][kint]=kfaultref2 |
350 |
|
351 |
|
352 |
# print kint, kfaultref |
353 |
|
354 |
# write interior elements to file |
355 |
Element_Type='Hex8' |
356 |
meshfaultL.write("%s %d\n"%(Element_Type,Element_Num)) |
357 |
|
358 |
for i in range(Element_Num): |
359 |
meshfaultL.write("%d %d"%(Element_ref[i],Element_tag[i])) |
360 |
for j in range(Element_numNodes): |
361 |
meshfaultL.write(" %d"%Element_Nodes[j][i]) |
362 |
meshfaultL.write("\n") |
363 |
|
364 |
# face elements |
365 |
FaceElement_Type='Hex8Face' |
366 |
FaceElement_Num= 2*(ne0*ne1 + ne0*ne2 + ne1*ne2) |
367 |
FaceElement_numNodes=8 |
368 |
|
369 |
meshfaultL.write("%s %d\n"%(FaceElement_Type,FaceElement_Num)) |
370 |
|
371 |
FaceElement_Nodes=zeros([FaceElement_numNodes,FaceElement_Num],Float) |
372 |
FaceElement_ref=zeros(FaceElement_Num,Float) |
373 |
FaceElement_tag=zeros(FaceElement_Num,Float) |
374 |
|
375 |
kcount=0 |
376 |
|
377 |
# defining face elements on x2=0 face |
378 |
for i1 in range (ne1): |
379 |
for i0 in range(ne0): |
380 |
i2=0 |
381 |
k=i0 + ne0*i1 + ne0*ne1*i2; |
382 |
# define corner node (node0) |
383 |
node0=i0 + N0*i1 + N0*N1*i2; |
384 |
FaceElement_ref[kcount]=kcount |
385 |
FaceElement_tag[kcount]=3 |
386 |
# for hex8face the face elements are specified by 8 nodes |
387 |
FaceElement_Nodes[0][kcount]=node0; |
388 |
FaceElement_Nodes[1][kcount]=node0+1; |
389 |
FaceElement_Nodes[2][kcount]=node0+N0+1; |
390 |
FaceElement_Nodes[3][kcount]=node0+N0; |
391 |
FaceElement_Nodes[4][kcount]=node0+N0*N1; |
392 |
FaceElement_Nodes[5][kcount]=node0+N0*N1+1; |
393 |
FaceElement_Nodes[6][kcount]=node0+N0*N1+N0+1; |
394 |
FaceElement_Nodes[7][kcount]=node0+N0*N1+N0; |
395 |
kcount+=1 |
396 |
|
397 |
# defining face elements on x2=L face |
398 |
for i1 in range (ne1): |
399 |
for i0 in range(ne0): |
400 |
i2=ne2-1 |
401 |
k=i0 + ne0*i1 + ne0*ne1*i2; |
402 |
# define corner node (node0) |
403 |
node0=i0 + N0*i1 + N0*N1*i2; |
404 |
FaceElement_ref[kcount]=kcount |
405 |
FaceElement_tag[kcount]=3 |
406 |
# for hex8face the face elements are specified by 8 nodes |
407 |
FaceElement_Nodes[0][kcount]=node0+N0*N1; |
408 |
FaceElement_Nodes[1][kcount]=node0+N0*N1+1; |
409 |
FaceElement_Nodes[2][kcount]=node0+N0*N1+N0+1; |
410 |
FaceElement_Nodes[3][kcount]=node0+N0*N1+N0; |
411 |
FaceElement_Nodes[4][kcount]=node0; |
412 |
FaceElement_Nodes[5][kcount]=node0+1; |
413 |
FaceElement_Nodes[6][kcount]=node0+N0+1; |
414 |
FaceElement_Nodes[7][kcount]=node0+N0; |
415 |
kcount+=1 |
416 |
|
417 |
# defining face elements on x1=0 face |
418 |
for i2 in range (ne2): |
419 |
for i0 in range(ne0): |
420 |
i1=0 |
421 |
k=i0 + ne0*i1 + ne0*ne1*i2; |
422 |
# define corner node (node0) |
423 |
node0=i0 + N0*i1 + N0*N1*i2; |
424 |
FaceElement_ref[kcount]=kcount |
425 |
FaceElement_tag[kcount]=3 |
426 |
# for hex8face the face elements are specified by 8 nodes |
427 |
FaceElement_Nodes[0][kcount]=node0; |
428 |
FaceElement_Nodes[1][kcount]=node0+N0*N1; |
429 |
FaceElement_Nodes[2][kcount]=node0+N0*N1+1; |
430 |
FaceElement_Nodes[3][kcount]=node0+1; |
431 |
FaceElement_Nodes[4][kcount]=node0+N0; |
432 |
FaceElement_Nodes[5][kcount]=node0+N0*N1+N0; |
433 |
FaceElement_Nodes[6][kcount]=node0+N0*N1+N0+1; |
434 |
FaceElement_Nodes[7][kcount]=node0+N0+1; |
435 |
kcount+=1 |
436 |
|
437 |
# defining face elements on x1=L face |
438 |
for i2 in range (ne2): |
439 |
for i0 in range(ne0): |
440 |
i1=ne1-1 |
441 |
k=i0 + ne0*i1 + ne0*ne1*i2; |
442 |
# define corner node (node0) |
443 |
node0=i0 + N0*i1 + N0*N1*i2; |
444 |
FaceElement_ref[kcount]=kcount |
445 |
FaceElement_tag[kcount]=3 |
446 |
# for hex8face the face elements are specified by 8 nodes |
447 |
FaceElement_Nodes[0][kcount]=node0+N0; |
448 |
FaceElement_Nodes[1][kcount]=node0+N0*N1+N0; |
449 |
FaceElement_Nodes[2][kcount]=node0+N0*N1+N0+1; |
450 |
FaceElement_Nodes[3][kcount]=node0+N0+1; |
451 |
FaceElement_Nodes[4][kcount]=node0; |
452 |
FaceElement_Nodes[5][kcount]=node0+N0*N1; |
453 |
FaceElement_Nodes[6][kcount]=node0+N0*N1+1; |
454 |
FaceElement_Nodes[7][kcount]=node0+1; |
455 |
kcount+=1 |
456 |
|
457 |
# defining face elements on x0=0 face |
458 |
for i2 in range (ne2): |
459 |
for i1 in range(ne1): |
460 |
i0=0 |
461 |
k=i0 + ne0*i1 + ne0*ne1*i2; |
462 |
# define corner node (node0) |
463 |
node0=i0 + N0*i1 + N0*N1*i2; |
464 |
FaceElement_ref[kcount]=kcount |
465 |
FaceElement_tag[kcount]=3 |
466 |
# for hex8face the face elements are specified by 8 nodes |
467 |
FaceElement_Nodes[0][kcount]=node0; |
468 |
FaceElement_Nodes[1][kcount]=node0+N0; |
469 |
FaceElement_Nodes[2][kcount]=node0+N0*N1+N0; |
470 |
FaceElement_Nodes[3][kcount]=node0+N0*N1; |
471 |
FaceElement_Nodes[4][kcount]=node0+1; |
472 |
FaceElement_Nodes[5][kcount]=node0+N0+1; |
473 |
FaceElement_Nodes[6][kcount]=node0+N0*N1+N0+1; |
474 |
FaceElement_Nodes[7][kcount]=node0+N0*N1+1; |
475 |
kcount+=1 |
476 |
|
477 |
# defining face elements on x0=L face |
478 |
for i2 in range (ne2): |
479 |
for i1 in range(ne1): |
480 |
i0=ne1-1 |
481 |
k=i0 + ne0*i1 + ne0*ne1*i2; |
482 |
# define corner node (node0) |
483 |
node0=i0 + N0*i1 + N0*N1*i2; |
484 |
FaceElement_ref[kcount]=kcount |
485 |
FaceElement_tag[kcount]=3 |
486 |
# for hex8face the face elements are specified by 8 nodes |
487 |
FaceElement_Nodes[0][kcount]=node0+1; |
488 |
FaceElement_Nodes[1][kcount]=node0+N0+1; |
489 |
FaceElement_Nodes[2][kcount]=node0+N0*N1+N0+1; |
490 |
FaceElement_Nodes[3][kcount]=node0+N0*N1+1; |
491 |
FaceElement_Nodes[4][kcount]=node0; |
492 |
FaceElement_Nodes[5][kcount]=node0+N0; |
493 |
FaceElement_Nodes[6][kcount]=node0+N0*N1+N0; |
494 |
FaceElement_Nodes[7][kcount]=node0+N0*N1; |
495 |
kcount+=1 |
496 |
|
497 |
|
498 |
|
499 |
|
500 |
for i in range(FaceElement_Num): |
501 |
meshfaultL.write("%d %d"%(FaceElement_ref[i],FaceElement_tag[i])) |
502 |
for j in range(FaceElement_numNodes): |
503 |
meshfaultL.write(" %d"%FaceElement_Nodes[j][i]) |
504 |
meshfaultL.write("\n") |
505 |
|
506 |
|
507 |
# contact elements |
508 |
ContactElement_Type='Hex8Face_Contact' |
509 |
ContactElement_Num=0 |
510 |
ContactElement_numNodes=16 |
511 |
# print contact elements on fault |
512 |
if contact==True: |
513 |
if n0double==0: |
514 |
ContactElement_Num=(n1double)*(n2double) |
515 |
ContactElement_Nodes=zeros([ContactElement_numNodes,ContactElement_Num],Float) |
516 |
ContactElement_ref=zeros(ContactElement_Num,Float) |
517 |
ContactElement_tag=zeros(ContactElement_Num,Float) |
518 |
#print ContactElement_Num |
519 |
|
520 |
for i2 in range(n2double): |
521 |
for i1 in range(n1double): |
522 |
k=i1+(n1double)*i2 |
523 |
#print k |
524 |
# define reference for interior elements with x0<=x0s |
525 |
# here the nodes are the old interior nodes |
526 |
kintold=int(M0i*(i0start-1) + M1i*(i1start+i1) + M2i*(i2start+i2)) |
527 |
|
528 |
# define reference for interior elements with x0>x0s |
529 |
# here the double nodes are the fault nodes |
530 |
|
531 |
kintfault=int(M0i*i0start + M1i*(i1start+i1) + M2i*(i2start+i2)) |
532 |
|
533 |
#nodecheck=int(Element_Nodes[1][kintold] ) |
534 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
535 |
#nodecheck=int(Element_Nodes[0][kintfault] ) |
536 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
537 |
|
538 |
#nodecheck=int(Element_Nodes[2][kintold] ) |
539 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
540 |
#nodecheck=int(Element_Nodes[3][kintfault] ) |
541 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
542 |
|
543 |
#nodecheck=int(Element_Nodes[6][kintold] ) |
544 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
545 |
#nodecheck=int(Element_Nodes[7][kintfault] ) |
546 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
547 |
|
548 |
#nodecheck=int(Element_Nodes[5][kintold] ) |
549 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
550 |
#nodecheck=int(Element_Nodes[4][kintfault] ) |
551 |
#print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck] |
552 |
|
553 |
ContactElement_ref[k]=k |
554 |
ContactElement_tag[k]=2 |
555 |
|
556 |
ContactElement_Nodes[0][k]=Element_Nodes[1][kintold] |
557 |
ContactElement_Nodes[1][k]=Element_Nodes[2][kintold] |
558 |
ContactElement_Nodes[2][k]=Element_Nodes[6][kintold] |
559 |
ContactElement_Nodes[3][k]=Element_Nodes[5][kintold] |
560 |
ContactElement_Nodes[4][k]=Element_Nodes[0][kintold] |
561 |
ContactElement_Nodes[5][k]=Element_Nodes[3][kintold] |
562 |
ContactElement_Nodes[6][k]=Element_Nodes[7][kintold] |
563 |
ContactElement_Nodes[7][k]=Element_Nodes[4][kintold] |
564 |
|
565 |
ContactElement_Nodes[8][k]=Element_Nodes[0][kintfault] |
566 |
ContactElement_Nodes[9][k]=Element_Nodes[3][kintfault] |
567 |
ContactElement_Nodes[10][k]=Element_Nodes[7][kintfault] |
568 |
ContactElement_Nodes[11][k]=Element_Nodes[4][kintfault] |
569 |
ContactElement_Nodes[12][k]=Element_Nodes[1][kintfault] |
570 |
ContactElement_Nodes[13][k]=Element_Nodes[2][kintfault] |
571 |
ContactElement_Nodes[14][k]=Element_Nodes[6][kintfault] |
572 |
ContactElement_Nodes[15][k]=Element_Nodes[5][kintfault] |
573 |
|
574 |
meshfaultL.write("%s %d\n"%(ContactElement_Type,ContactElement_Num)) |
575 |
|
576 |
for i in range(ContactElement_Num): |
577 |
meshfaultL.write("%d %d"%(ContactElement_ref[i],ContactElement_tag[i])) |
578 |
for j in range(ContactElement_numNodes): |
579 |
meshfaultL.write(" %d"%ContactElement_Nodes[j][i]) |
580 |
meshfaultL.write("\n") |
581 |
|
582 |
# point sources (not supported yet) |
583 |
|
584 |
meshfaultL.write("Point1 0") |
585 |
|
586 |
|
587 |
|
588 |
meshfaultL.close() |
589 |
|
590 |
|
591 |
ne_w=int((ne/height)*width+0.5) |
592 |
mydomainfile = faultL(width,width, height,ne_w, ne_w, ne,contact=True,xstart=numarray.array([width/2.,7.*width/16.,3.*height/8.]),xend=numarray.array([width/2.,9.*width/16.,5.*height/8.])) |