1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2009 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2009 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="https://launchpad.net/escript-finley" |
21 |
|
22 |
""" |
23 |
calculation of the stress distribution around a fault from the slip on the fault |
24 |
|
25 |
e.g. use slip_stress_mesh.py to generate mesh |
26 |
|
27 |
@var __author__: name of author |
28 |
@var __copyright__: copyrights |
29 |
@var __license__: licence agreement |
30 |
@var __url__: url entry point on documentation |
31 |
@var __version__: version |
32 |
@var __date__: date of the version |
33 |
""" |
34 |
|
35 |
__author__="Lutz Gross, Louise Kettle" |
36 |
|
37 |
from esys.escript import * |
38 |
from esys.escript.pdetools import SaddlePointProblem |
39 |
from esys.escript.linearPDEs import LinearPDE |
40 |
from esys.finley import ReadMesh |
41 |
|
42 |
|
43 |
rho=0. |
44 |
lam_lmbd=1.7e11 |
45 |
lam_mu=1.7e11 |
46 |
g=9.81 |
47 |
fstart = [50000.0, 40000.0, 10909.09090909091] |
48 |
fend = [50000.0, 60000.0, 19090.909090909092] |
49 |
|
50 |
|
51 |
|
52 |
|
53 |
class SlippingFault(SaddlePointProblem): |
54 |
""" |
55 |
simple example of saddle point problem |
56 |
""" |
57 |
def __init__(self,domain): |
58 |
super(SlippingFault, self).__init__(self) |
59 |
self.domain=domain |
60 |
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim()) |
61 |
self.__pde_u.setSymmetryOn() |
62 |
|
63 |
def initialize(self,density=1.,lmbd=1., mu=1., traction=Data(),fixed_u_mask=Data(), slip=0.): |
64 |
d=self.domain.getDim() |
65 |
self.slip=slip |
66 |
A =self.__pde_u.createCoefficientOfGeneralPDE("A") |
67 |
for i in range(self.domain.getDim()): |
68 |
for j in range(self.domain.getDim()): |
69 |
A[i,j,j,i] += mu |
70 |
A[i,j,i,j] += mu |
71 |
A[i,i,j,j] += lmbd |
72 |
self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=-kronecker(Function(self.domain))[d-1]*g*density,y=traction) |
73 |
|
74 |
def inner(self,p0,p1): |
75 |
return integrate(inner(p0,p1),FunctionOnContactZero(self.domain)) |
76 |
|
77 |
def solve_f(self,u,p,tol=1.e-8): |
78 |
self.__pde_u.setTolerance(tol) |
79 |
self.__pde_u.setValue(y_contact=-p) |
80 |
# print "p:",inf(p),sup(p) |
81 |
# print "u:",inf(u),sup(u) |
82 |
self.__pde_u.setValue(y_contact=-p) |
83 |
return self.__pde_u.getSolution() |
84 |
|
85 |
def solve_g(self,u,tol=1.e-8): |
86 |
dp=Vector(0.,FunctionOnContactZero(self.domain)) |
87 |
h=FunctionOnContactZero(self.domain).getSize() |
88 |
# print jump(u)-self.slip |
89 |
dp[0]=(self.slip[0]-jump(u[0]))*lam_mu/h |
90 |
dp[1]=(self.slip[1]-jump(u[1]))*lam_mu/h |
91 |
dp[2]=(self.slip[2]-jump(u[2]))*lam_mu/h |
92 |
return dp |
93 |
|
94 |
|
95 |
dom=ReadMesh("meshfault3D.fly",integrationOrder=-1) |
96 |
prop=SlippingFault(dom) |
97 |
d=dom.getDim() |
98 |
x=dom.getX()[0] |
99 |
# x=dom.getX()[d-1] |
100 |
mask=whereZero(x-inf(x))*numpy.ones((d,)) |
101 |
x=FunctionOnContactZero(dom).getX() |
102 |
s=numpy.array([-100000.,1.,1.]) |
103 |
for i in range(3): |
104 |
d=fend[i]-fstart[i] |
105 |
if d>0: |
106 |
q=(x[i]-fstart[i])/d |
107 |
s=q*(1-q)*4*s |
108 |
elif d<0: |
109 |
q=(x[i]-fend[i])/d |
110 |
s=q*(1-q)*4*s |
111 |
u0=Vector(0.,Solution(dom)) |
112 |
p0=Vector(1.,FunctionOnContactZero(dom)) |
113 |
prop.initialize(fixed_u_mask=mask,slip=Data(s,FunctionOnContactZero(dom)), density=rho,lmbd=lam_lmbd, mu=lam_mu) |
114 |
u,p=prop.solve(u0,p0,iter_max=50,tolerance=0.13,accepted_reduction=1.) |
115 |
saveVTK("dis.vtu",u=u) |
116 |
saveVTK("fault.vtu",sigma=p,s=jump(u)) |