1 |
ksteube |
1809 |
|
2 |
jfenwick |
3981 |
############################################################################## |
3 |
ksteube |
1312 |
# |
4 |
jfenwick |
6651 |
# Copyright (c) 2003-2018 by The University of Queensland |
5 |
jfenwick |
3981 |
# http://www.uq.edu.au |
6 |
ksteube |
1312 |
# |
7 |
ksteube |
1809 |
# Primary Business: Queensland, Australia |
8 |
jfenwick |
6112 |
# Licensed under the Apache License, version 2.0 |
9 |
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
10 |
ksteube |
1312 |
# |
11 |
jfenwick |
3981 |
# Development until 2012 by Earth Systems Science Computational Center (ESSCC) |
12 |
jfenwick |
4657 |
# Development 2012-2013 by School of Earth Sciences |
13 |
|
|
# Development from 2014 by Centre for Geoscience Computing (GeoComp) |
14 |
jfenwick |
3981 |
# |
15 |
|
|
############################################################################## |
16 |
gross |
883 |
|
17 |
sshaw |
5706 |
from __future__ import print_function, division |
18 |
|
|
|
19 |
jfenwick |
6651 |
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland |
20 |
jfenwick |
3981 |
http://www.uq.edu.au |
21 |
ksteube |
1809 |
Primary Business: Queensland, Australia""" |
22 |
jfenwick |
6112 |
__license__="""Licensed under the Apache License, version 2.0 |
23 |
|
|
http://www.apache.org/licenses/LICENSE-2.0""" |
24 |
jfenwick |
2344 |
__url__="https://launchpad.net/escript-finley" |
25 |
ksteube |
1809 |
|
26 |
gross |
883 |
""" |
27 |
|
|
calculation of the stress distribution around a fault from the slip on the fault |
28 |
|
|
|
29 |
gross |
884 |
e.g. use slip_stress_mesh.py to generate mesh |
30 |
|
|
|
31 |
jfenwick |
2625 |
:var __author__: name of author |
32 |
|
|
:var __copyright__: copyrights |
33 |
|
|
:var __license__: licence agreement |
34 |
|
|
:var __url__: url entry point on documentation |
35 |
|
|
:var __version__: version |
36 |
|
|
:var __date__: date of the version |
37 |
gross |
883 |
""" |
38 |
|
|
|
39 |
gross |
884 |
__author__="Lutz Gross, Louise Kettle" |
40 |
gross |
883 |
|
41 |
|
|
from esys.escript import * |
42 |
|
|
from esys.escript.pdetools import SaddlePointProblem |
43 |
|
|
from esys.escript.linearPDEs import LinearPDE |
44 |
gross |
884 |
from esys.finley import ReadMesh |
45 |
caltinay |
3346 |
from esys.weipa import saveVTK |
46 |
gross |
883 |
|
47 |
|
|
|
48 |
gross |
884 |
rho=0. |
49 |
gross |
887 |
lam_lmbd=1.7e11 |
50 |
|
|
lam_mu=1.7e11 |
51 |
gross |
883 |
g=9.81 |
52 |
gross |
893 |
fstart = [50000.0, 40000.0, 10909.09090909091] |
53 |
gross |
894 |
fend = [50000.0, 60000.0, 19090.909090909092] |
54 |
gross |
883 |
|
55 |
gross |
887 |
|
56 |
|
|
|
57 |
gross |
893 |
|
58 |
gross |
883 |
class SlippingFault(SaddlePointProblem): |
59 |
|
|
""" |
60 |
|
|
simple example of saddle point problem |
61 |
|
|
""" |
62 |
|
|
def __init__(self,domain): |
63 |
|
|
super(SlippingFault, self).__init__(self) |
64 |
|
|
self.domain=domain |
65 |
|
|
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim()) |
66 |
|
|
self.__pde_u.setSymmetryOn() |
67 |
|
|
|
68 |
|
|
def initialize(self,density=1.,lmbd=1., mu=1., traction=Data(),fixed_u_mask=Data(), slip=0.): |
69 |
|
|
d=self.domain.getDim() |
70 |
|
|
self.slip=slip |
71 |
|
|
A =self.__pde_u.createCoefficientOfGeneralPDE("A") |
72 |
|
|
for i in range(self.domain.getDim()): |
73 |
|
|
for j in range(self.domain.getDim()): |
74 |
|
|
A[i,j,j,i] += mu |
75 |
|
|
A[i,j,i,j] += mu |
76 |
|
|
A[i,i,j,j] += lmbd |
77 |
|
|
self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=-kronecker(Function(self.domain))[d-1]*g*density,y=traction) |
78 |
|
|
|
79 |
|
|
def inner(self,p0,p1): |
80 |
gross |
887 |
return integrate(inner(p0,p1),FunctionOnContactZero(self.domain)) |
81 |
gross |
883 |
|
82 |
|
|
def solve_f(self,u,p,tol=1.e-8): |
83 |
|
|
self.__pde_u.setTolerance(tol) |
84 |
gross |
893 |
self.__pde_u.setValue(y_contact=-p) |
85 |
|
|
# print "p:",inf(p),sup(p) |
86 |
|
|
# print "u:",inf(u),sup(u) |
87 |
|
|
self.__pde_u.setValue(y_contact=-p) |
88 |
gross |
883 |
return self.__pde_u.getSolution() |
89 |
|
|
|
90 |
|
|
def solve_g(self,u,tol=1.e-8): |
91 |
gross |
893 |
dp=Vector(0.,FunctionOnContactZero(self.domain)) |
92 |
|
|
h=FunctionOnContactZero(self.domain).getSize() |
93 |
|
|
# print jump(u)-self.slip |
94 |
|
|
dp[0]=(self.slip[0]-jump(u[0]))*lam_mu/h |
95 |
|
|
dp[1]=(self.slip[1]-jump(u[1]))*lam_mu/h |
96 |
|
|
dp[2]=(self.slip[2]-jump(u[2]))*lam_mu/h |
97 |
gross |
883 |
return dp |
98 |
|
|
|
99 |
|
|
|
100 |
gross |
888 |
dom=ReadMesh("meshfault3D.fly",integrationOrder=-1) |
101 |
gross |
883 |
prop=SlippingFault(dom) |
102 |
|
|
d=dom.getDim() |
103 |
gross |
888 |
x=dom.getX()[0] |
104 |
|
|
# x=dom.getX()[d-1] |
105 |
gross |
2468 |
mask=whereZero(x-inf(x))*numpy.ones((d,)) |
106 |
gross |
887 |
x=FunctionOnContactZero(dom).getX() |
107 |
gross |
2468 |
s=numpy.array([-100000.,1.,1.]) |
108 |
gross |
887 |
for i in range(3): |
109 |
|
|
d=fend[i]-fstart[i] |
110 |
|
|
if d>0: |
111 |
|
|
q=(x[i]-fstart[i])/d |
112 |
|
|
s=q*(1-q)*4*s |
113 |
|
|
elif d<0: |
114 |
|
|
q=(x[i]-fend[i])/d |
115 |
|
|
s=q*(1-q)*4*s |
116 |
gross |
883 |
u0=Vector(0.,Solution(dom)) |
117 |
gross |
884 |
p0=Vector(1.,FunctionOnContactZero(dom)) |
118 |
|
|
prop.initialize(fixed_u_mask=mask,slip=Data(s,FunctionOnContactZero(dom)), density=rho,lmbd=lam_lmbd, mu=lam_mu) |
119 |
gross |
893 |
u,p=prop.solve(u0,p0,iter_max=50,tolerance=0.13,accepted_reduction=1.) |
120 |
caltinay |
2534 |
saveVTK("dis.vtu",u=u) |
121 |
|
|
saveVTK("fault.vtu",sigma=p,s=jump(u)) |