1 |
# |
2 |
# $Id$ |
3 |
# |
4 |
####################################################### |
5 |
# |
6 |
# Copyright 2003-2007 by ACceSS MNRF |
7 |
# Copyright 2007 by University of Queensland |
8 |
# |
9 |
# http://esscc.uq.edu.au |
10 |
# Primary Business: Queensland, Australia |
11 |
# Licensed under the Open Software License version 3.0 |
12 |
# http://www.opensource.org/licenses/osl-3.0.php |
13 |
# |
14 |
####################################################### |
15 |
# |
16 |
|
17 |
""" |
18 |
solvers for the stokes problem |
19 |
|
20 |
@var __author__: name of author |
21 |
@var __copyright__: copyrights |
22 |
@var __license__: licence agreement |
23 |
@var __url__: url entry point on documentation |
24 |
@var __version__: version |
25 |
@var __date__: date of the version |
26 |
""" |
27 |
|
28 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
29 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
30 |
http://www.access.edu.au |
31 |
Primary Business: Queensland, Australia""" |
32 |
__license__="""Licensed under the Open Software License version 3.0 |
33 |
http://www.opensource.org/licenses/osl-3.0.php""" |
34 |
__url__="http://www.iservo.edu.au/esys" |
35 |
__version__="$Revision$" |
36 |
__date__="$Date$" |
37 |
|
38 |
from esys.escript import * |
39 |
from esys.escript.pdetools import SaddlePointProblem |
40 |
from esys.escript.linearPDEs import LinearPDE |
41 |
from esys.finley import Rectangle |
42 |
|
43 |
class SimpleStokesProblem(SaddlePointProblem): |
44 |
""" |
45 |
simple example of saddle point problem |
46 |
""" |
47 |
def __init__(self,domain): |
48 |
super(SimpleStokesProblem, self).__init__(self) |
49 |
|
50 |
self.__pde_u=LinearPDE(domain) |
51 |
self.__pde_u.setSymmetryOn() |
52 |
self.__pde_u.setValue(A=identityTensor4(dom)) |
53 |
|
54 |
self.__pde_p=LinearPDE(domain) |
55 |
self.__pde_p.setReducedOrderOn() |
56 |
self.__pde_p.setSymmetryOn() |
57 |
self.__pde_p.setValue(D=1.) |
58 |
|
59 |
def initialize(self,f=Data(),fixed_u_mask=Data()): |
60 |
self.__pde_u.setValue(q=fixed_u_mask,Y=f) |
61 |
def inner(self,p0,p1): |
62 |
return integrate(p0*p1,Function(self.__pde_p.getDomain())) |
63 |
|
64 |
def solve_f(self,u,p,tol=1.e-8): |
65 |
self.__pde_u.setTolerance(tol) |
66 |
self.__pde_u.setValue(X=grad(u)+p*kronecker(self.__pde_u.getDomain())) |
67 |
return self.__pde_u.getSolution() |
68 |
def solve_g(self,u,tol=1.e-8): |
69 |
self.__pde_p.setTolerance(tol) |
70 |
self.__pde_p.setValue(X=-u) |
71 |
dp=self.__pde_p.getSolution() |
72 |
return dp |
73 |
|
74 |
class StokesProblem(SaddlePointProblem): |
75 |
""" |
76 |
simple example of saddle point problem |
77 |
""" |
78 |
def __init__(self,domain): |
79 |
super(StokesProblem, self).__init__(self) |
80 |
self.domain=domain |
81 |
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim()) |
82 |
self.__pde_u.setSymmetryOn() |
83 |
|
84 |
self.__pde_p=LinearPDE(domain) |
85 |
self.__pde_p.setReducedOrderOn() |
86 |
self.__pde_p.setSymmetryOn() |
87 |
|
88 |
def initialize(self,f=Data(),fixed_u_mask=Data(),eta=1): |
89 |
self.eta=eta |
90 |
A =self.__pde_u.createCoefficientOfGeneralPDE("A") |
91 |
for i in range(self.domain.getDim()): |
92 |
for j in range(self.domain.getDim()): |
93 |
A[i,j,j,i] += self.eta |
94 |
A[i,j,i,j] += self.eta |
95 |
self.__pde_p.setValue(D=1./self.eta) |
96 |
self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=f) |
97 |
|
98 |
def inner(self,p0,p1): |
99 |
return integrate(p0*p1,Function(self.__pde_p.getDomain())) |
100 |
|
101 |
def solve_f(self,u,p,tol=1.e-8): |
102 |
self.__pde_u.setTolerance(tol) |
103 |
g=grad(u) |
104 |
self.__pde_u.setValue(X=self.eta*symmetric(g)+p*kronecker(self.__pde_u.getDomain())) |
105 |
return self.__pde_u.getSolution() |
106 |
|
107 |
def solve_g(self,u,tol=1.e-8): |
108 |
self.__pde_p.setTolerance(tol) |
109 |
self.__pde_p.setValue(X=-u) |
110 |
dp=self.__pde_p.getSolution() |
111 |
return dp |
112 |
|
113 |
NE=50 |
114 |
dom=Rectangle(NE,NE,order=2) |
115 |
# prop=SimpleStokesProblem(dom) |
116 |
prop=StokesProblem(dom) |
117 |
x=dom.getX() |
118 |
mask=(whereZero(x[0])+whereZero(x[0]-1.)+whereZero(x[1]-1.))*unitVector(0,dom)+(whereZero(x[1]-1.)+whereZero(x[1]))*unitVector(1,dom) |
119 |
u0=Vector(0.,Solution(dom)) |
120 |
u0[0]=x[1]*whereZero(x[1]-1.) |
121 |
p0=Scalar(0,ReducedSolution(dom)) |
122 |
# prop.initialize(fixed_u_mask=mask) |
123 |
prop.initialize(fixed_u_mask=mask,eta=10.) |
124 |
u,p=prop.solve(u0,p0,tolerance=0.01) |
125 |
# saveVTK("stokes.xml",u=u,p=p,m=mask,u0=u0) |
126 |
|
127 |
eta=whereNegative(x[1]-0.5)*1.e6+whereNonNegative(x[1]-0.5) |
128 |
prop.initialize(fixed_u_mask=mask,eta=eta) |
129 |
u,p=prop.solve(u0,p0,tolerance=0.01,tolerance_u=0.1,accepted_reduction=0.8) |
130 |
saveVTK("stokes.xml",u=u,p=p,m=mask,u0=u0) |
131 |
|
132 |
# vim: expandtab shiftwidth=4: |