1 |
# $Id$ |
2 |
|
3 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
4 |
http://www.access.edu.au |
5 |
Primary Business: Queensland, Australia""" |
6 |
__license__="""Licensed under the Open Software License version 3.0 |
7 |
http://www.opensource.org/licenses/osl-3.0.php""" |
8 |
|
9 |
from esys.escript import * |
10 |
from esys.escript.modelframe import Model,ParameterSet |
11 |
from math import log |
12 |
|
13 |
class Sequencer(Model): |
14 |
""" |
15 |
Runs through time until t_end is reached. |
16 |
""" |
17 |
def __init__(self,debug=False): |
18 |
""" |
19 |
@param t_end: - model is terminated when t_end is passed |
20 |
(exposed in writeXML) |
21 |
@type t_end: float |
22 |
@param dt_max: - maximum time step size |
23 |
@type dt_max: float |
24 |
@param t: - initial time |
25 |
@type t: float |
26 |
|
27 |
""" |
28 |
super(Sequencer,self).__init__(debug=debug) |
29 |
self.declareParameter(t=0., |
30 |
t_end=1., |
31 |
dt_max=Model.UNDEF_DT) |
32 |
|
33 |
def doInitialization(self): |
34 |
""" |
35 |
initialize time integration |
36 |
""" |
37 |
self.__t_old = self.t |
38 |
|
39 |
def doStepPreprocessing(self, dt): |
40 |
self.t = self.__t_old+dt |
41 |
|
42 |
def doStepPostprocessing(self, dt): |
43 |
self.__t_old = self.t |
44 |
|
45 |
def finalize(self): |
46 |
""" |
47 |
true when t has reached t_end |
48 |
""" |
49 |
return self.t >= self.t_end |
50 |
|
51 |
def getSafeTimeStepSize(self, dt): |
52 |
""" |
53 |
returns dt_max |
54 |
""" |
55 |
return self.dt_max |
56 |
|
57 |
class GaussianProfile(ParameterSet): |
58 |
""" |
59 |
Generates a Gaussian profile at center x_c, width width and height A |
60 |
over a domain |
61 |
|
62 |
@ivar domain (in): domain |
63 |
@ivar x_c (in): center of the Gaussian profile (default [0.,0.,0.]) |
64 |
@ivar A (in): height of the profile. A maybe a vector. (default 1.) |
65 |
@ivar width (in): width of the profile (default 0.1) |
66 |
@ivar r (in): radius of the circle (default = 0) |
67 |
@ivar out (callable): profile |
68 |
|
69 |
In the case that the spatial dimension is two, The third component of |
70 |
x_c is dropped |
71 |
""" |
72 |
def __init__(self,debug=False): |
73 |
ParameterSet.__init__(self,debug=debug) |
74 |
self.declareParameter(domain=None, |
75 |
x_c=numarray.zeros([3]), |
76 |
A=1., |
77 |
width=0.1, |
78 |
r=0) |
79 |
|
80 |
def out(self): |
81 |
""" |
82 |
Generate the Gaussian profile |
83 |
""" |
84 |
x = self.domain.getX() |
85 |
dim = self.domain.getDim() |
86 |
l = length(x-self.x_c[:dim]) |
87 |
m = whereNegative(l-self.r) |
88 |
|
89 |
return (m+(1.-m)*exp(-log(2.)*(l/self.width)**2))*self.A |
90 |
|
91 |
class InterpolateOverBox(ParameterSet): |
92 |
""" |
93 |
Returns values at each time. The values are defined through given values |
94 |
at time node. |
95 |
|
96 |
@ivar domain (in): domain |
97 |
@ivar left_bottom_front (in): coordinates of left, bottom, front corner |
98 |
of the box |
99 |
@ivar right_top_back (in): coordinates of the right, top, back corner |
100 |
of the box |
101 |
@ivar value_left_bottom_front (in): value at left,bottom,front corner |
102 |
@ivar value_right_bottom_front (in): value at right, bottom, front corner |
103 |
@ivar value_left_top_front (in): value at left,top,front corner |
104 |
@ivar value_right_top_front (in): value at right,top,front corner |
105 |
@ivar value_left_bottom_back (in): value at left,bottom,back corner |
106 |
@ivar value_right_bottom_back (in): value at right,bottom,back corner |
107 |
@ivar value_left_top_back (in): value at left,top,back corner |
108 |
@ivar value_right_top_back (in): value at right,top,back corner |
109 |
@ivar out (callable): values at domain locations by bilinear |
110 |
interpolation. For two dimensional domains back values are |
111 |
ignored. |
112 |
""" |
113 |
|
114 |
def __init__(self, debug=False): |
115 |
ParameterSet.__init__(self, debug=debug) |
116 |
self.declareParameter(domain=None, |
117 |
left_bottom_front=[0.,0.,0.], |
118 |
right_top_back=[1.,1.,1.], |
119 |
value_left_bottom_front=0., |
120 |
value_right_bottom_front=0., |
121 |
value_left_top_front=0., |
122 |
value_right_top_front=0., |
123 |
value_left_bottom_back=0., |
124 |
value_right_bottom_back=0., |
125 |
value_left_top_back=0., |
126 |
value_right_top_back=0.) |
127 |
|
128 |
|
129 |
def out(self): |
130 |
x = self.domain.getX() |
131 |
if self.domain.getDim() == 2: |
132 |
f_right = (x[0] - self.left_bottom_front[0])/\ |
133 |
(self.right_top_back[0] - self.left_bottom_front[0]) |
134 |
f_left = 1. - f_right |
135 |
f_top = (x[1] - self.left_bottom_front[1])/\ |
136 |
(self.right_top_back[1] - self.left_bottom_front[1]) |
137 |
f_bottom = 1. - f_top |
138 |
out = self.value_left_bottom_front * f_left * f_bottom \ |
139 |
+ self.value_right_bottom_front* f_right * f_bottom \ |
140 |
+ self.value_left_top_front * f_left * f_top \ |
141 |
+ self.value_right_top_front * f_right * f_top |
142 |
else: |
143 |
f_right = (x[0] - self.left_bottom_front[0])/\ |
144 |
(self.right_top_back[0] - self.left_bottom_front[0]) |
145 |
f_left = 1. - f_right |
146 |
f_top = (x[1] - self.left_bottom_front[1])/\ |
147 |
(self.right_top_back[1] - self.left_bottom_front[1]) |
148 |
f_bottom = 1. - f_top |
149 |
f_back = (x[2] - self.left_bottom_front[1])/\ |
150 |
(self.right_top_back[2] - self.left_bottom_front[2]) |
151 |
f_front = 1. - f_back |
152 |
out = self.value_left_bottom_front * f_left * f_bottom * f_front \ |
153 |
+ self.value_right_bottom_front* f_right * f_bottom * f_front \ |
154 |
+ self.value_left_top_front * f_left * f_top * f_front \ |
155 |
+ self.value_right_top_front * f_right * f_top * f_front \ |
156 |
+ self.value_left_bottom_back * f_left * f_bottom * f_back \ |
157 |
+ self.value_right_bottom_back * f_right * f_bottom * f_back \ |
158 |
+ self.value_left_top_back * f_left * f_top * f_back \ |
159 |
+ self.value_right_top_back * f_right * f_top * f_back |
160 |
return out |
161 |
|
162 |
|
163 |
class InterpolatedTimeProfile(ParameterSet): |
164 |
""" |
165 |
|
166 |
Returns values at each time. The values are defined through given |
167 |
values at time node. |
168 |
|
169 |
value[i] defines the value at time nodes[i]. Between nodes linear |
170 |
interpolation is used. |
171 |
|
172 |
For time t<nodes[0], value[0] is used and for t>nodes[l], values[l] |
173 |
is used where l=len(nodes)-1. |
174 |
|
175 |
@ivar t (in): current time |
176 |
@ivar node (in): list of time nodes |
177 |
@ivar values (in): list of values at time nodes |
178 |
@ivar out (callable): current value |
179 |
""" |
180 |
|
181 |
def __init__(self,debug=False): |
182 |
ParameterSet.__init__(self,debug=debug) |
183 |
self.declareParameter(t=0., \ |
184 |
nodes=[0.,1.],\ |
185 |
values=[1.,1.]) |
186 |
def out(self): |
187 |
l = len(self.nodes) - 1 |
188 |
t = self.t |
189 |
if t <= self.nodes[0]: |
190 |
return self.values[0] |
191 |
else: |
192 |
for i in range(1,l): |
193 |
if t < self.nodes[i]: |
194 |
m = (self.values[i-1] - self.values[i])/\ |
195 |
(self.nodes[i-1] - self.nodes[i]) |
196 |
return m*(t-self.nodes[i-1]) + self.values[i-1] |
197 |
return self.values[l] |
198 |
|
199 |
class LinearCombination(Model): |
200 |
""" |
201 |
Returns a linear combination of the f0*v0+f1*v1+f2*v2+f3*v3+f4*v4 |
202 |
|
203 |
@ivar f0 (in): numerical object or None (default: None) |
204 |
@ivar v0 (in): numerical object or None (default: None) |
205 |
@ivar f1 (in): numerical object or None (default: None) |
206 |
@ivar v1 (in): numerical object or None (default: None) |
207 |
@ivar f2 (in): numerical object or None (default: None) |
208 |
@ivar v2 (in): numerical object or None (default: None) |
209 |
@ivar f3 (in): numerical object or None (default: None) |
210 |
@ivar v3 (in): numerical object or None (default: None) |
211 |
@ivar f4 (in): numerical object or None (default: None) |
212 |
@ivar v4 (in): numerical object or None (default: None) |
213 |
@ivar out (callable): current value |
214 |
""" |
215 |
def __init__(self,debug=False): |
216 |
Model.__init__(self,debug=debug) |
217 |
self.declareParameter(f0=None, \ |
218 |
v0=None, \ |
219 |
f1=None, \ |
220 |
v1=None, \ |
221 |
f2=None, \ |
222 |
v2=None, \ |
223 |
f3=None, \ |
224 |
v3=None, \ |
225 |
f4=None, \ |
226 |
v4=None) |
227 |
|
228 |
def out(self): |
229 |
if not self.f0 == None and not self.v0 == None: |
230 |
fv0 = self.f0*self.v0 |
231 |
else: |
232 |
fv0 = None |
233 |
|
234 |
if not self.f1 == None and not self.v1 == None: |
235 |
fv1 = self.f1*self.v1 |
236 |
else: |
237 |
fv1 = None |
238 |
|
239 |
if not self.f2 == None and not self.v2 == None: |
240 |
fv2 = f2*v2 |
241 |
else: |
242 |
fv2 = None |
243 |
|
244 |
if not self.f3 == None and not self.v3 == None: |
245 |
fv3 = self.f3*self.v3 |
246 |
else: |
247 |
fv3 = None |
248 |
|
249 |
if not self.f4 == None and not self.v4 == None: |
250 |
fv4 = self.f4*self.v4 |
251 |
else: |
252 |
fv4 = None |
253 |
|
254 |
if fv0 == None: |
255 |
out = 0. |
256 |
else: |
257 |
out = fv0 |
258 |
if not fv1 == None: |
259 |
out += fv1 |
260 |
if not fv2 == None: |
261 |
out += fv2 |
262 |
if not fv3 == None: |
263 |
out += fv3 |
264 |
return out |
265 |
|
266 |
# vim: expandtab shiftwidth=4: |