1 |
# $Id$ |
2 |
|
3 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
4 |
http://www.access.edu.au |
5 |
Primary Business: Queensland, Australia""" |
6 |
__license__="""Licensed under the Open Software License version 3.0 |
7 |
http://www.opensource.org/licenses/osl-3.0.php""" |
8 |
|
9 |
from esys.escript import * |
10 |
from esys.escript.modelframe import Model,ParameterSet |
11 |
from math import log |
12 |
|
13 |
class Sequencer(Model): |
14 |
""" |
15 |
Runs through time until t_end is reached. |
16 |
|
17 |
@ivar t_end: model is terminated when t_end is passed, default 1 (in). |
18 |
@type t_end: C{float} |
19 |
@ivar dt_max: maximum time step size, default L{Model.UNDEF_DT} (in) |
20 |
@type dt_max: C{float} |
21 |
@ivar t: current time stamp (in/out). By default it is initialized with zero. |
22 |
@type t: C{float} |
23 |
|
24 |
""" |
25 |
def __init__(self,debug=False): |
26 |
""" |
27 |
""" |
28 |
super(Sequencer,self).__init__(debug=debug) |
29 |
self.declareParameter(t=0., |
30 |
t_end=1., |
31 |
dt_max=Model.UNDEF_DT) |
32 |
|
33 |
def doInitialization(self): |
34 |
""" |
35 |
initialize time integration |
36 |
""" |
37 |
self.__t_old = self.t |
38 |
|
39 |
def doStepPreprocessing(self, dt): |
40 |
self.t = self.__t_old+dt |
41 |
|
42 |
def doStepPostprocessing(self, dt): |
43 |
self.__t_old = self.t |
44 |
|
45 |
def finalize(self): |
46 |
""" |
47 |
returns true when L{t} has reached L{t_end} |
48 |
""" |
49 |
return self.t >= self.t_end |
50 |
|
51 |
def getSafeTimeStepSize(self, dt): |
52 |
""" |
53 |
returns L{dt_max} |
54 |
""" |
55 |
return self.dt_max |
56 |
|
57 |
class GaussianProfile(ParameterSet): |
58 |
""" |
59 |
Generates a Gaussian profile at center x_c, width width and height A |
60 |
over a domain |
61 |
|
62 |
@ivar domain: domain |
63 |
@ivar x_c: center of the Gaussian profile (default [0.,0.,0.]) |
64 |
@ivar A: (in) height of the profile. A maybe a vector. (default 1.) |
65 |
@ivar width: (in) width of the profile (default 0.1) |
66 |
@ivar r: (in) radius of the circle (default = 0) |
67 |
|
68 |
In the case that the spatial dimension is two, The third component of |
69 |
x_c is dropped. |
70 |
""" |
71 |
def __init__(self,debug=False): |
72 |
ParameterSet.__init__(self,debug=debug) |
73 |
self.declareParameter(domain=None, |
74 |
x_c=numarray.zeros([3]), |
75 |
A=1., |
76 |
width=0.1, |
77 |
r=0) |
78 |
|
79 |
def out(self): |
80 |
""" |
81 |
Generate the Gaussian profile |
82 |
|
83 |
Link against this method to get the output of this model. |
84 |
""" |
85 |
x = self.domain.getX() |
86 |
dim = self.domain.getDim() |
87 |
l = length(x-self.x_c[:dim]) |
88 |
m = whereNegative(l-self.r) |
89 |
|
90 |
return (m+(1.-m)*exp(-log(2.)*(l/self.width)**2))*self.A |
91 |
|
92 |
class InterpolateOverBox(ParameterSet): |
93 |
""" |
94 |
Returns values at each time. The values are defined through given values |
95 |
at time node. For two dimensional domains back values are ignored. |
96 |
|
97 |
@ivar domain: domain |
98 |
@ivar left_bottom_front: (in) coordinates of left, bottom, front corner |
99 |
of the box |
100 |
@ivar right_top_back: (in) coordinates of the right, top, back corner |
101 |
of the box |
102 |
@ivar value_left_bottom_front: (in) value at left,bottom,front corner |
103 |
@ivar value_right_bottom_front: (in) value at right, bottom, front corner |
104 |
@ivar value_left_top_front: (in) value at left,top,front corner |
105 |
@ivar value_right_top_front: (in) value at right,top,front corner |
106 |
@ivar value_left_bottom_back: (in) value at left,bottom,back corner |
107 |
@ivar value_right_bottom_back: (in) value at right,bottom,back corner |
108 |
@ivar value_left_top_back: (in) value at left,top,back corner |
109 |
@ivar value_right_top_back: (in) value at right,top,back corner |
110 |
""" |
111 |
|
112 |
def __init__(self, debug=False): |
113 |
ParameterSet.__init__(self, debug=debug) |
114 |
self.declareParameter(domain=None, |
115 |
left_bottom_front=[0.,0.,0.], |
116 |
right_top_back=[1.,1.,1.], |
117 |
value_left_bottom_front=0., |
118 |
value_right_bottom_front=0., |
119 |
value_left_top_front=0., |
120 |
value_right_top_front=0., |
121 |
value_left_bottom_back=0., |
122 |
value_right_bottom_back=0., |
123 |
value_left_top_back=0., |
124 |
value_right_top_back=0.) |
125 |
|
126 |
|
127 |
def out(self): |
128 |
""" |
129 |
values at domain locations by bilinear interpolation of the given values. |
130 |
|
131 |
Link against this method to get the output of this model. |
132 |
""" |
133 |
x = self.domain.getX() |
134 |
if self.domain.getDim() == 2: |
135 |
f_right = (x[0] - self.left_bottom_front[0])/\ |
136 |
(self.right_top_back[0] - self.left_bottom_front[0]) |
137 |
f_left = 1. - f_right |
138 |
f_top = (x[1] - self.left_bottom_front[1])/\ |
139 |
(self.right_top_back[1] - self.left_bottom_front[1]) |
140 |
f_bottom = 1. - f_top |
141 |
out = f_left * f_bottom * self.value_left_bottom_front \ |
142 |
+ f_right * f_bottom * self.value_right_bottom_front \ |
143 |
+ f_left * f_top * self.value_left_top_front \ |
144 |
+ f_right * f_top * self.value_right_top_front |
145 |
else: |
146 |
f_right = (x[0] - self.left_bottom_front[0])/\ |
147 |
(self.right_top_back[0] - self.left_bottom_front[0]) |
148 |
f_left = 1. - f_right |
149 |
f_top = (x[1] - self.left_bottom_front[1])/\ |
150 |
(self.right_top_back[1] - self.left_bottom_front[1]) |
151 |
f_bottom = 1. - f_top |
152 |
f_back = (x[2] - self.left_bottom_front[1])/\ |
153 |
(self.right_top_back[2] - self.left_bottom_front[2]) |
154 |
f_front = 1. - f_back |
155 |
out = f_left * f_bottom * f_front * self.value_left_bottom_front\ |
156 |
+ f_right * f_bottom * f_front * self.value_right_bottom_front\ |
157 |
+ f_left * f_top * f_front * self.value_left_top_front\ |
158 |
+ f_right * f_top * f_front * self.value_right_top_front\ |
159 |
+ f_left * f_bottom * f_back * self.value_left_bottom_back\ |
160 |
+ f_right * f_bottom * f_back * self.value_right_bottom_back\ |
161 |
+ f_left * f_top * f_back * self.value_left_top_back\ |
162 |
+ f_right * f_top * f_back * self.value_right_top_back |
163 |
return out |
164 |
|
165 |
|
166 |
class InterpolatedTimeProfile(ParameterSet): |
167 |
""" |
168 |
|
169 |
Returns values at each time. The values are defined through given |
170 |
values at time node. |
171 |
|
172 |
value[i] defines the value at time nodes[i]. Between nodes linear |
173 |
interpolation is used. |
174 |
|
175 |
For time t<nodes[0], value[0] is used and for t>nodes[l], values[l] |
176 |
is used where l=len(nodes)-1. |
177 |
|
178 |
@ivar t: (in) current time |
179 |
@ivar node: (in) list of time nodes |
180 |
@ivar values: (in) list of values at time nodes |
181 |
""" |
182 |
|
183 |
def __init__(self,debug=False): |
184 |
ParameterSet.__init__(self,debug=debug) |
185 |
self.declareParameter(t=0., \ |
186 |
nodes=[0.,1.],\ |
187 |
values=[1.,1.]) |
188 |
def out(self): |
189 |
""" |
190 |
current value |
191 |
|
192 |
Link against this method to get the output of this model. |
193 |
""" |
194 |
l = len(self.nodes) - 1 |
195 |
t = self.t |
196 |
if t <= self.nodes[0]: |
197 |
return self.values[0] |
198 |
else: |
199 |
for i in range(1,l): |
200 |
if t < self.nodes[i]: |
201 |
m = (self.values[i-1] - self.values[i])/\ |
202 |
(self.nodes[i-1] - self.nodes[i]) |
203 |
return m*(t-self.nodes[i-1]) + self.values[i-1] |
204 |
return self.values[l] |
205 |
|
206 |
class LinearCombination(Model): |
207 |
""" |
208 |
Returns a linear combination of the f0*v0+f1*v1+f2*v2+f3*v3+f4*v4 |
209 |
|
210 |
@ivar f0: (in) numerical object or None, default=None (in) |
211 |
@ivar v0: (in) numerical object or None, default=None (in) |
212 |
@ivar f1: (in) numerical object or None, default=None (in) |
213 |
@ivar v1: (in) numerical object or None, default=None (in) |
214 |
@ivar f2: (in) numerical object or None, default=None (in) |
215 |
@ivar v2: (in) numerical object or None, default=None (in) |
216 |
@ivar f3: (in) numerical object or None, default=None (in) |
217 |
@ivar v3: (in) numerical object or None, default=None (in) |
218 |
@ivar f4: (in) numerical object or None, default=None (in) |
219 |
@ivar v4: (in) numerical object or None, default=None (in) |
220 |
""" |
221 |
def __init__(self,debug=False): |
222 |
Model.__init__(self,debug=debug) |
223 |
self.declareParameter(f0=None, \ |
224 |
v0=None, \ |
225 |
f1=None, \ |
226 |
v1=None, \ |
227 |
f2=None, \ |
228 |
v2=None, \ |
229 |
f3=None, \ |
230 |
v3=None, \ |
231 |
f4=None, \ |
232 |
v4=None) |
233 |
|
234 |
def out(self): |
235 |
""" |
236 |
returns f0*v0+f1*v1+f2*v2+f3*v3+f4*v4. |
237 |
Link against this method to get the output of this model. |
238 |
""" |
239 |
if not self.f0 == None and not self.v0 == None: |
240 |
fv0 = self.f0*self.v0 |
241 |
else: |
242 |
fv0 = None |
243 |
|
244 |
if not self.f1 == None and not self.v1 == None: |
245 |
fv1 = self.f1*self.v1 |
246 |
else: |
247 |
fv1 = None |
248 |
|
249 |
if not self.f2 == None and not self.v2 == None: |
250 |
fv2 = f2*v2 |
251 |
else: |
252 |
fv2 = None |
253 |
|
254 |
if not self.f3 == None and not self.v3 == None: |
255 |
fv3 = self.f3*self.v3 |
256 |
else: |
257 |
fv3 = None |
258 |
|
259 |
if not self.f4 == None and not self.v4 == None: |
260 |
fv4 = self.f4*self.v4 |
261 |
else: |
262 |
fv4 = None |
263 |
|
264 |
if fv0 == None: |
265 |
out = 0. |
266 |
else: |
267 |
out = fv0 |
268 |
if not fv1 == None: |
269 |
out += fv1 |
270 |
if not fv2 == None: |
271 |
out += fv2 |
272 |
if not fv3 == None: |
273 |
out += fv3 |
274 |
return out |
275 |
|
276 |
# vim: expandtab shiftwidth=4: |