1 |
# $Id$ |
2 |
|
3 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
4 |
http://www.access.edu.au |
5 |
Primary Business: Queensland, Australia""" |
6 |
__license__="""Licensed under the Open Software License version 3.0 |
7 |
http://www.opensource.org/licenses/osl-3.0.php""" |
8 |
|
9 |
from esys.escript import * |
10 |
from esys.escript.modelframe import Model,ParameterSet |
11 |
from math import log |
12 |
|
13 |
class Sequencer(Model): |
14 |
""" |
15 |
Runs through time until t_end is reached. |
16 |
|
17 |
@ivar t_end: model is terminated when t_end is passed, default 1 (in). |
18 |
@type t_end: C{float} |
19 |
@ivar dt_max: maximum time step size, default L{Model.UNDEF_DT} (in) |
20 |
@type dt_max: C{float} |
21 |
@ivar t: current time stamp (in/out). By default it is initialized with zero. |
22 |
@type t: C{float} |
23 |
|
24 |
""" |
25 |
def __init__(self,debug=False): |
26 |
""" |
27 |
""" |
28 |
super(Sequencer,self).__init__(debug=debug) |
29 |
self.declareParameter(t=0., |
30 |
t_end=1., |
31 |
dt_max=Model.UNDEF_DT) |
32 |
|
33 |
def doInitialization(self): |
34 |
""" |
35 |
initialize time integration |
36 |
""" |
37 |
self.__t_old = self.t |
38 |
|
39 |
def doStepPreprocessing(self, dt): |
40 |
self.t = self.__t_old+dt |
41 |
|
42 |
def doStepPostprocessing(self, dt): |
43 |
self.__t_old = self.t |
44 |
|
45 |
def finalize(self): |
46 |
""" |
47 |
returns true when L{t} has reached L{t_end} |
48 |
""" |
49 |
return self.t >= self.t_end |
50 |
|
51 |
def getSafeTimeStepSize(self, dt): |
52 |
""" |
53 |
returns L{dt_max} |
54 |
""" |
55 |
return self.dt_max |
56 |
|
57 |
class GaussianProfile(ParameterSet): |
58 |
""" |
59 |
Generates a Gaussian profile at center x_c, width width and height A |
60 |
over a domain |
61 |
|
62 |
@ivar domain: domain |
63 |
@ivar x_c: center of the Gaussian profile (default [0.,0.,0.]) |
64 |
@ivar A: (in) height of the profile. A maybe a vector. (default 1.) |
65 |
@ivar width: (in) width of the profile (default 0.1) |
66 |
@ivar r: (in) radius of the circle (default = 0) |
67 |
|
68 |
In the case that the spatial dimension is two, The third component of |
69 |
x_c is dropped. |
70 |
""" |
71 |
def __init__(self,debug=False): |
72 |
ParameterSet.__init__(self,debug=debug) |
73 |
self.declareParameter(domain=None, |
74 |
x_c=numarray.zeros([3]), |
75 |
A=1., |
76 |
width=0.1, |
77 |
r=0) |
78 |
|
79 |
def out(self): |
80 |
""" |
81 |
Generate the Gaussian profile |
82 |
|
83 |
Link against this method to get the output of this model. |
84 |
""" |
85 |
x = self.domain.getX() |
86 |
dim = self.domain.getDim() |
87 |
l = length(x-self.x_c[:dim]) |
88 |
m = whereNegative(l-self.r) |
89 |
|
90 |
return (m+(1.-m)*exp(-log(2.)*(l/self.width)**2))*self.A |
91 |
|
92 |
class InterpolateOverBox(ParameterSet): |
93 |
""" |
94 |
Returns values at each time. The values are defined through given values |
95 |
at time node. For two dimensional domains back values are ignored. |
96 |
|
97 |
@ivar domain: domain |
98 |
@ivar value_left_bottom_front: (in) value at left,bottom,front corner |
99 |
@ivar value_right_bottom_front: (in) value at right, bottom, front corner |
100 |
@ivar value_left_top_front: (in) value at left,top,front corner |
101 |
@ivar value_right_top_front: (in) value at right,top,front corner |
102 |
@ivar value_left_bottom_back: (in) value at left,bottom,back corner |
103 |
@ivar value_right_bottom_back: (in) value at right,bottom,back corner |
104 |
@ivar value_left_top_back: (in) value at left,top,back corner |
105 |
@ivar value_right_top_back: (in) value at right,top,back corner |
106 |
""" |
107 |
|
108 |
def __init__(self, debug=False): |
109 |
ParameterSet.__init__(self, debug=debug) |
110 |
self.declareParameter(domain=None, |
111 |
value_left_bottom_front=0., |
112 |
value_right_bottom_front=0., |
113 |
value_left_top_front=0., |
114 |
value_right_top_front=0., |
115 |
value_left_bottom_back=0., |
116 |
value_right_bottom_back=0., |
117 |
value_left_top_back=0., |
118 |
value_right_top_back=0.) |
119 |
|
120 |
|
121 |
def out(self): |
122 |
""" |
123 |
values at domain locations by bilinear interpolation of the given values. |
124 |
|
125 |
Link against this method to get the output of this model. |
126 |
""" |
127 |
x = self.domain.getX() |
128 |
if self.domain.getDim() == 2: |
129 |
x0,x1=x[0],x[1] |
130 |
left_bottom_front0,right_top_back0=inf(x0),sup(x0) |
131 |
left_bottom_front1,right_top_back1=inf(x1),sup(x1) |
132 |
f_right = (x0 - left_bottom_front0)/(right_top_back0 -left_bottom_front0) |
133 |
f_left = 1. - f_right |
134 |
f_top = (x1 - left_bottom_front1)/(right_top_back1 - left_bottom_front1) |
135 |
f_bottom = 1. - f_top |
136 |
out = f_left * f_bottom * self.value_left_bottom_front \ |
137 |
+ f_right * f_bottom * self.value_right_bottom_front \ |
138 |
+ f_left * f_top * self.value_left_top_front \ |
139 |
+ f_right * f_top * self.value_right_top_front |
140 |
else: |
141 |
x0,x1,x2=x[0],x[1],x[2] |
142 |
left_bottom_front0,right_top_back0=inf(x0),sup(x0) |
143 |
left_bottom_front1,right_top_back1=inf(x1),sup(x1) |
144 |
left_bottom_front2,right_top_back2=inf(x2),sup(x2) |
145 |
f_right = (x0 - left_bottom_front0)/(right_top_back0 - left_bottom_front0) |
146 |
f_left = 1. - f_right |
147 |
f_top = (x1 - left_bottom_front1)/(right_top_back1 - left_bottom_front1) |
148 |
f_bottom = 1. - f_top |
149 |
f_back = (x2 - left_bottom_front1)/(right_top_back2 - left_bottom_front2) |
150 |
f_front = 1. - f_back |
151 |
out = f_left * f_bottom * f_front * self.value_left_bottom_front\ |
152 |
+ f_right * f_bottom * f_front * self.value_right_bottom_front\ |
153 |
+ f_left * f_top * f_front * self.value_left_top_front\ |
154 |
+ f_right * f_top * f_front * self.value_right_top_front\ |
155 |
+ f_left * f_bottom * f_back * self.value_left_bottom_back\ |
156 |
+ f_right * f_bottom * f_back * self.value_right_bottom_back\ |
157 |
+ f_left * f_top * f_back * self.value_left_top_back\ |
158 |
+ f_right * f_top * f_back * self.value_right_top_back |
159 |
return out |
160 |
|
161 |
|
162 |
class InterpolatedTimeProfile(ParameterSet): |
163 |
""" |
164 |
|
165 |
Returns values at each time. The values are defined through given |
166 |
values at time node. |
167 |
|
168 |
value[i] defines the value at time nodes[i]. Between nodes linear |
169 |
interpolation is used. |
170 |
|
171 |
For time t<nodes[0], value[0] is used and for t>nodes[l], values[l] |
172 |
is used where l=len(nodes)-1. |
173 |
|
174 |
@ivar t: (in) current time |
175 |
@ivar node: (in) list of time nodes |
176 |
@ivar values: (in) list of values at time nodes |
177 |
""" |
178 |
|
179 |
def __init__(self,debug=False): |
180 |
ParameterSet.__init__(self,debug=debug) |
181 |
self.declareParameter(t=0., \ |
182 |
nodes=[0.,1.],\ |
183 |
values=[1.,1.]) |
184 |
def out(self): |
185 |
""" |
186 |
current value |
187 |
|
188 |
Link against this method to get the output of this model. |
189 |
""" |
190 |
l = len(self.nodes) - 1 |
191 |
t = self.t |
192 |
if t <= self.nodes[0]: |
193 |
return self.values[0] |
194 |
else: |
195 |
for i in range(1,l): |
196 |
if t < self.nodes[i]: |
197 |
m = (self.values[i-1] - self.values[i])/\ |
198 |
(self.nodes[i-1] - self.nodes[i]) |
199 |
return m*(t-self.nodes[i-1]) + self.values[i-1] |
200 |
return self.values[l] |
201 |
|
202 |
class ScalarDistributionFromTags(ParameterSet): |
203 |
""" |
204 |
creates a scalar distribution on a domain from tags |
205 |
|
206 |
@ivar domain: domain |
207 |
@type domain: L{esys.escript.Domain} |
208 |
@ivar default: default value |
209 |
@ivar tag0: tag 0 |
210 |
@type tag0: C{int} |
211 |
@ivar value0: value for tag 0 |
212 |
@type value0: C{float} |
213 |
@ivar tag1: tag 1 |
214 |
@type tag1: C{int} |
215 |
@ivar value1: value for tag 1 |
216 |
@type value1: C{float} |
217 |
@ivar tag2: tag 2 |
218 |
@type tag2: C{int} |
219 |
@ivar value2: value for tag 2 |
220 |
@type value2: C{float} |
221 |
@ivar tag3: tag 3 |
222 |
@type tag3: C{int} |
223 |
@ivar value3: value for tag 3 |
224 |
@type value3: C{float} |
225 |
@ivar tag4: tag 4 |
226 |
@type tag4: C{int} |
227 |
@ivar value4: value for tag 4 |
228 |
@type value4: C{float} |
229 |
@ivar tag5: tag 5 |
230 |
@type tag5: C{int} |
231 |
@ivar value5: value for tag 5 |
232 |
@type value5: C{float} |
233 |
@ivar tag6: tag 6 |
234 |
@type tag6: C{int} |
235 |
@ivar value6: value for tag 6 |
236 |
@type value6: C{float} |
237 |
@ivar tag7: tag 7 |
238 |
@type tag7: C{int} |
239 |
@ivar value7: value for tag 7 |
240 |
@type value7: C{float} |
241 |
@ivar tag8: tag 8 |
242 |
@type tag8: C{int} |
243 |
@ivar value8: value for tag 8 |
244 |
@type value8: C{float} |
245 |
@ivar tag9: tag 9 |
246 |
@type tag9: C{int} |
247 |
@ivar value9: value for tag 9 |
248 |
@type value9: C{float} |
249 |
""" |
250 |
def __init__(self,debug=False): |
251 |
super(ScalarDistributionFromTags, self).__init__(debug=debug) |
252 |
self.declareParameter(domain=None, |
253 |
default=0., |
254 |
tag0=None, |
255 |
value0=0., |
256 |
tag1=None, |
257 |
value1=0., |
258 |
tag2=None, |
259 |
value2=0., |
260 |
tag3=None, |
261 |
value3=0., |
262 |
tag4=None, |
263 |
value4=0., |
264 |
tag5=None, |
265 |
value5=0., |
266 |
tag6=None, |
267 |
value6=0., |
268 |
tag7=None, |
269 |
value7=0., |
270 |
tag8=None, |
271 |
value8=0., |
272 |
tag9=None, |
273 |
value9=0.) |
274 |
|
275 |
|
276 |
def out(self): |
277 |
""" |
278 |
returns a L{esys.escript.Data} object |
279 |
Link against this method to get the output of this model. |
280 |
""" |
281 |
d=Scalar(self.default,Function(self.domain)) |
282 |
if not self.tag0 == None: d.setTaggedValue(self.tag0,self.value0) |
283 |
if not self.tag1 == None: d.setTaggedValue(self.tag1,self.value1) |
284 |
if not self.tag2 == None: d.setTaggedValue(self.tag2,self.value2) |
285 |
if not self.tag3 == None: d.setTaggedValue(self.tag3,self.value3) |
286 |
if not self.tag4 == None: d.setTaggedValue(self.tag4,self.value4) |
287 |
if not self.tag5 == None: d.setTaggedValue(self.tag5,self.value5) |
288 |
if not self.tag6 == None: d.setTaggedValue(self.tag6,self.value6) |
289 |
if not self.tag7 == None: d.setTaggedValue(self.tag7,self.value7) |
290 |
if not self.tag8 == None: d.setTaggedValue(self.tag8,self.value8) |
291 |
if not self.tag9 == None: d.setTaggedValue(self.tag9,self.value9) |
292 |
return d |
293 |
|
294 |
class LinearCombination(ParameterSet): |
295 |
""" |
296 |
Returns a linear combination of the f0*v0+f1*v1+f2*v2+f3*v3+f4*v4 |
297 |
|
298 |
@ivar f0: numerical object or None, default=None (in) |
299 |
@ivar v0: numerical object or None, default=None (in) |
300 |
@ivar f1: numerical object or None, default=None (in) |
301 |
@ivar v1: numerical object or None, default=None (in) |
302 |
@ivar f2: numerical object or None, default=None (in) |
303 |
@ivar v2: numerical object or None, default=None (in) |
304 |
@ivar f3: numerical object or None, default=None (in) |
305 |
@ivar v3: numerical object or None, default=None (in) |
306 |
@ivar f4: numerical object or None, default=None (in) |
307 |
@ivar v4: numerical object or None, default=None (in) |
308 |
""" |
309 |
def __init__(self,debug=False): |
310 |
Model.__init__(self,debug=debug) |
311 |
self.declareParameter(f0=None, \ |
312 |
v0=None, \ |
313 |
f1=None, \ |
314 |
v1=None, \ |
315 |
f2=None, \ |
316 |
v2=None, \ |
317 |
f3=None, \ |
318 |
v3=None, \ |
319 |
f4=None, \ |
320 |
v4=None) |
321 |
|
322 |
def out(self): |
323 |
""" |
324 |
returns f0*v0+f1*v1+f2*v2+f3*v3+f4*v4. |
325 |
Link against this method to get the output of this model. |
326 |
""" |
327 |
if not self.f0 == None and not self.v0 == None: |
328 |
fv0 = self.f0*self.v0 |
329 |
else: |
330 |
fv0 = None |
331 |
|
332 |
if not self.f1 == None and not self.v1 == None: |
333 |
fv1 = self.f1*self.v1 |
334 |
else: |
335 |
fv1 = None |
336 |
|
337 |
if not self.f2 == None and not self.v2 == None: |
338 |
fv2 = f2*v2 |
339 |
else: |
340 |
fv2 = None |
341 |
|
342 |
if not self.f3 == None and not self.v3 == None: |
343 |
fv3 = self.f3*self.v3 |
344 |
else: |
345 |
fv3 = None |
346 |
|
347 |
if not self.f4 == None and not self.v4 == None: |
348 |
fv4 = self.f4*self.v4 |
349 |
else: |
350 |
fv4 = None |
351 |
|
352 |
if fv0 == None: |
353 |
out = 0. |
354 |
else: |
355 |
out = fv0 |
356 |
if not fv1 == None: |
357 |
out += fv1 |
358 |
if not fv2 == None: |
359 |
out += fv2 |
360 |
if not fv3 == None: |
361 |
out += fv3 |
362 |
return out |
363 |
|
364 |
class MergeConstraints(ParameterSet): |
365 |
""" |
366 |
Returns a linear combination of the f0*v0+f1*v1+f2*v2+f3*v3+f4*v4 |
367 |
""" |
368 |
def __init__(self,debug=False): |
369 |
super(MergeConstraints, self).__init__(debug=debug) |
370 |
self.declareParameter(location_of_constraint0=None, \ |
371 |
value_of_constraint0=None, \ |
372 |
location_of_constraint1=None, \ |
373 |
value_of_constraint1=None, \ |
374 |
location_of_constraint2=None, \ |
375 |
value_of_constraint2=None, \ |
376 |
location_of_constraint3=None, \ |
377 |
value_of_constraint3=None, \ |
378 |
location_of_constraint4=None, \ |
379 |
value_of_constraint4=None) |
380 |
def location_of_constraint(self): |
381 |
""" |
382 |
return the values used to constrain a solution |
383 |
|
384 |
@return: the mask marking the locations of the constraints |
385 |
@rtype: L{escript.Scalar} |
386 |
""" |
387 |
out_loc=0 |
388 |
if not self.location_of_constraint0 == None: |
389 |
out_loc=wherePositive(out_loc+wherePositive(self.location_of_constraint0)) |
390 |
if not self.location_of_constraint1 == None: |
391 |
out_loc=wherePositive(out_loc+wherePositive(self.location_of_constraint1)) |
392 |
if not self.location_of_constraint2 == None: |
393 |
out_loc=wherePositive(out_loc+wherePositive(self.location_of_constraint2)) |
394 |
if not self.location_of_constraint3 == None: |
395 |
out_loc=wherePositive(out_loc+wherePositive(self.location_of_constraint3)) |
396 |
return out_loc |
397 |
|
398 |
def value_of_constraint(self): |
399 |
""" |
400 |
return the values used to constrain a solution |
401 |
|
402 |
@return: values to be used at the locations of the constraints. If |
403 |
L{value} is not given C{None} is rerturned. |
404 |
@rtype: L{escript.Scalar} |
405 |
""" |
406 |
out_loc=0 |
407 |
out=0 |
408 |
if not self.location_of_constraint0 == None: |
409 |
tmp=wherePositive(self.location_of_constraint0) |
410 |
out=out*(1.-tmp)+self.value_of_constraint0*tmp |
411 |
out_loc=wherePositive(out_loc+tmp) |
412 |
if not self.location_of_constraint1 == None: |
413 |
tmp=wherePositive(self.location_of_constraint1) |
414 |
out=out*(1.-tmp)+self.value_of_constraint1*tmp |
415 |
out_loc=wherePositive(out_loc+tmp) |
416 |
if not self.location_of_constraint2 == None: |
417 |
tmp=wherePositive(self.location_of_constraint2) |
418 |
out=out*(1.-tmp)+self.value_of_constraint2*tmp |
419 |
out_loc=wherePositive(out_loc+tmp) |
420 |
if not self.location_of_constraint3 == None: |
421 |
tmp=wherePositive(self.location_of_constraint3) |
422 |
out=out*(1.-tmp)+self.value_of_constraint3*tmp |
423 |
out_loc=wherePositive(out_loc+tmp) |
424 |
return out |
425 |
# vim: expandtab shiftwidth=4: |