1 |
# $Id$ |
# $Id$ |
2 |
|
from escript.escript import * |
3 |
|
from escript.modelframe import Model |
4 |
|
from math import log |
5 |
|
|
6 |
|
class Sequencer(Model): |
7 |
|
"""@brief runs through time until t_end is reached. |
8 |
|
|
9 |
from esys.modelframe import Model |
@param t_end (in) - model is terminate when t_end is passed (default Model.UNDEF_DT) |
10 |
from esys.escript import * |
@param dt_max (in) - maximum time step size (default Model.UNDEF_DT) |
11 |
from math import log |
@param t (out) - current time |
12 |
|
|
13 |
|
""" |
14 |
|
def __init__(self,debug=False): |
15 |
|
Model.__init__(self,debug=debug) |
16 |
|
self.declareParameter(t=0., \ |
17 |
|
t_end=Model.UNDEF_DT, \ |
18 |
|
dt_max=Model.UNDEF_DT) |
19 |
|
|
20 |
|
def doInitialization(self): |
21 |
|
self.__t_old=self.t |
22 |
|
|
23 |
|
def doStepPreprocessing(self,dt): |
24 |
|
self.t=self.__t_old+dt |
25 |
|
|
26 |
|
def doStepPostprocessing(self,dt): |
27 |
|
self.__t_old=self.t |
28 |
|
|
29 |
|
def finalize(self): |
30 |
|
"""true when t has reached t_end""" |
31 |
|
return self.t>=self.t_end |
32 |
|
|
33 |
|
def getSafeTimeStepSize(self,dt): |
34 |
|
"""returns dt_max""" |
35 |
|
return self.dt_max |
36 |
|
|
37 |
class GausseanProfile(Model): |
class GausseanProfile(Model): |
38 |
"""@brief generates a gaussean profile at center x_c, width width and height A over a domain |
"""@brief generates a gaussean profile at center x_c, width width and height A over a domain |
42 |
@param A (in) - height of the profile. A maybe a vector. (default 1.) |
@param A (in) - height of the profile. A maybe a vector. (default 1.) |
43 |
@param width (in) - width of the profile (default 0.1) |
@param width (in) - width of the profile (default 0.1) |
44 |
@param r (in) - radius of the circle (default = 0) |
@param r (in) - radius of the circle (default = 0) |
45 |
@param out (out) - profile |
@param out (callable) - profile |
46 |
|
|
47 |
|
|
48 |
In the case that the spatial dimension is two, The third component of x_c is dropped |
In the case that the spatial dimension is two, The third component of x_c is dropped |
49 |
""" |
""" |
50 |
def __init__(self,debug=False): |
def __init__(self,debug=False): |
51 |
Model.__init__(self,debug=debug) |
Model.__init__(self,debug=debug) |
52 |
self.declareParameter(domain=None, x_c=numarray.zeros([3]),A=1.,width=0.1,r=0) |
self.declareParameter(domain=None, |
53 |
|
x_c=numarray.zeros([3]), |
54 |
|
A=1., |
55 |
|
width=0.1, |
56 |
|
r=0) |
57 |
|
|
58 |
def out(self): |
def out(self): |
59 |
x=self.domain.getX() |
x=self.domain.getX() |
62 |
m=(l-self.r).whereNegative() |
m=(l-self.r).whereNegative() |
63 |
return (m+(1.-m)*exp(-log(2.)*(l/self.width)**2))*self.A |
return (m+(1.-m)*exp(-log(2.)*(l/self.width)**2))*self.A |
64 |
|
|
65 |
|
class InterpolateOverBox(Model): |
66 |
|
""" |
67 |
|
@brief returns values at each time. The values are defined through given values at time node. |
68 |
|
|
69 |
|
@param domain (in) - domain |
70 |
|
@param left_bottom_front (in) - coordinates of left,bottom,front corner of the box |
71 |
|
@param right_top_back (in) - coordinates of the right, top, back corner of the box |
72 |
|
@param value_left_bottom_front (in) - value at left,bottom,front corner |
73 |
|
@param value_right_bottom_front (in) - value at right, bottom, front corner |
74 |
|
@param value_left_top_front (in) - value at left,top,front corner |
75 |
|
@param value_right_top_front (in) - value at right,top,front corner |
76 |
|
@param value_left_bottom_back (in) - value at left,bottom,back corner |
77 |
|
@param value_right_bottom_back (in) - value at right,bottom,back corner |
78 |
|
@param value_left_top_back (in) - value at left,top,back corner |
79 |
|
@param value_right_top_back (in) - value at right,top,back corner |
80 |
|
@param out (callable) - values at doamin locations by bilinear interpolation. for two dimensional domains back values are ignored. |
81 |
|
|
82 |
|
""" |
83 |
|
|
84 |
|
def __init__(self,debug=False): |
85 |
|
Model.__init__(self,debug=debug) |
86 |
|
self.declareParameter(domain=None, |
87 |
|
left_bottom_front=[0.,0.,0.], |
88 |
|
right_top_back=[1.,1.,1.], |
89 |
|
value_left_bottom_front=0., |
90 |
|
value_right_bottom_front=0., |
91 |
|
value_left_top_front=0., |
92 |
|
value_right_top_front=0., |
93 |
|
value_left_bottom_back=0., |
94 |
|
value_right_bottom_back=0., |
95 |
|
value_left_top_back=0., |
96 |
|
value_right_top_back=0.) |
97 |
|
|
98 |
|
|
99 |
|
def out(self): |
100 |
|
x=self.domain.getX() |
101 |
|
if self.domain.getDim()==2: |
102 |
|
f_right=(x[0]-self.left_bottom_front[0])/(self.right_top_back[0]-self.left_bottom_front[0]) |
103 |
|
f_left=1.-f_right |
104 |
|
f_top=(x[1]-self.left_bottom_front[1])/(self.right_top_back[1]-self.left_bottom_front[1]) |
105 |
|
f_bottom=1.-f_top |
106 |
|
out=self.value_left_bottom_front * f_left * f_bottom \ |
107 |
|
+self.value_right_bottom_front* f_right * f_bottom \ |
108 |
|
+self.value_left_top_front * f_left * f_top \ |
109 |
|
+self.value_right_top_front * f_right * f_top |
110 |
|
|
111 |
|
else: |
112 |
|
f_right=(x[0]-self.left_bottom_front[0])/(self.right_top_back[0]-self.left_bottom_front[0]) |
113 |
|
f_left=1.-f_right |
114 |
|
f_top=(x[1]-self.left_bottom_front[1])/(self.right_top_back[1]-self.left_bottom_front[1]) |
115 |
|
f_bottom=1.-f_top |
116 |
|
f_back=(x[2]-self.left_bottom_front[1])/(self.right_top_back[2]-self.left_bottom_front[2]) |
117 |
|
f_front=1.-f_back |
118 |
|
out=self.value_left_bottom_front * f_left * f_bottom * f_front \ |
119 |
|
+self.value_right_bottom_front* f_right * f_bottom * f_front \ |
120 |
|
+self.value_left_top_front * f_left * f_top * f_front \ |
121 |
|
+self.value_right_top_front * f_right * f_top * f_front \ |
122 |
|
+self.value_left_bottom_back * f_left * f_bottom * f_back \ |
123 |
|
+self.value_right_bottom_back * f_right * f_bottom * f_back \ |
124 |
|
+self.value_left_top_back * f_left * f_top * f_back \ |
125 |
|
+self.value_right_top_back * f_right * f_top * f_back |
126 |
|
return out |
127 |
|
|
128 |
|
|
129 |
class InterpolatedTimeProfile(Model): |
class InterpolatedTimeProfile(Model): |
130 |
""" """ |
"""@brief returns values at each time. The values are defined through given values at time node. |
131 |
|
|
132 |
|
value[i] defines the value at time nodes[i]. Between nodes linear interpolation is used. |
133 |
|
for time t<nodes[0] value[0] is used and for t>nodes[l] values[l] is used where l=len(nodes)-1. |
134 |
|
|
135 |
|
|
136 |
|
@param t (in) - current time |
137 |
|
@param node (in) - list of time nodes |
138 |
|
@param values (in) - list of values at time nodes |
139 |
|
@param out (callable) - current value |
140 |
|
|
141 |
|
|
142 |
|
""" |
143 |
|
|
144 |
|
def __init__(self,debug=False): |
145 |
|
Model.__init__(self,debug=debug) |
146 |
|
self.declareParameter(t=0., \ |
147 |
|
nodes=[0.,1.],\ |
148 |
|
values=[1.,1.]) |
149 |
|
def out(self): |
150 |
|
l=len(self.nodes)-1 |
151 |
|
t=self.t |
152 |
|
if t<=self.nodes[0]: |
153 |
|
return self.values[0] |
154 |
|
else: |
155 |
|
for i in range(1,l): |
156 |
|
if t<self.nodes[i]: |
157 |
|
m=(self.values[i-1]-self.values[i])/(self.nodes[i-1]-self.nodes[i]) |
158 |
|
return m*(t-self.nodes[i-1])+self.values[i-1] |
159 |
|
return self.values[l] |
160 |
|
|
161 |
|
class LinearCombination(Model): |
162 |
|
"""@brief returns a linear combination of the f0*v0+f1*v1+f2*v2+f3*v3+f4*v4 |
163 |
|
|
164 |
|
@param f0 (in) numerical object or None (default: None) |
165 |
|
@param v0 (in) numerical object or None (default: None) |
166 |
|
@param f1 (in) numerical object or None (default: None) |
167 |
|
@param v1 (in) numerical object or None (default: None) |
168 |
|
@param f2 (in) numerical object or None (default: None) |
169 |
|
@param v2 (in) numerical object or None (default: None) |
170 |
|
@param f3 (in) numerical object or None (default: None) |
171 |
|
@param v3 (in) numerical object or None (default: None) |
172 |
|
@param f4 (in) numerical object or None (default: None) |
173 |
|
@param v4 (in) numerical object or None (default: None) |
174 |
|
@param out (callable) - current value |
175 |
|
|
176 |
|
|
177 |
|
""" |
178 |
def __init__(self,debug=False): |
def __init__(self,debug=False): |
179 |
Model.__init__(self,debug=debug) |
Model.__init__(self,debug=debug) |
180 |
self.declareParameter(t=[0.,1.],\ |
self.declareParameter(f0=None, \ |
181 |
values=[1.,1.],\ |
v0=None, \ |
182 |
out=0.) |
f1=None, \ |
183 |
def doInitialization(self,t): |
v1=None, \ |
184 |
self.__tn=t |
f2=None, \ |
185 |
|
v2=None, \ |
186 |
def doStep(self,dt): |
f3=None, \ |
187 |
t=self.__tn+dt |
v3=None, \ |
188 |
if t<=self.t[0]: |
f4=None, \ |
189 |
self.out=self.values[0] |
v4=None) |
190 |
else: |
def out(self): |
191 |
for i in range(1,len(self.t)): |
if not self.f0==None and not self.v0==None: |
192 |
if t<self.t[i]: |
fv0=self.f0*self.v0 |
193 |
m=(self.values[i-1]-self.values[i])/(self.t[i-1]-self.t[i]) |
else: |
194 |
self.out=m*(t-self.t[i-1])+self.values[i-1] |
fv0=None |
195 |
self.out=self.t[len(self.t)-1] |
|
196 |
self.__tn+=dt |
if not self.f1==None and not self.v1==None: |
197 |
|
fv1=self.f1*self.v1 |
198 |
|
else: |
199 |
|
fv1=None |
200 |
|
|
201 |
|
if not self.f2==None and not self.v2==None: |
202 |
|
fv2=f2*v2 |
203 |
|
else: |
204 |
|
fv2=None |
205 |
|
|
206 |
|
if not self.f3==None and not self.v3==None: |
207 |
|
fv3=self.f3*self.v3 |
208 |
|
else: |
209 |
|
fv3=None |
210 |
|
|
211 |
|
if not self.f4==None and not self.v4==None: |
212 |
|
fv4=self.f4*self.v4 |
213 |
|
else: |
214 |
|
fv4=None |
215 |
|
|
216 |
|
if fv0==None: |
217 |
|
out=0. |
218 |
|
else: |
219 |
|
out=fv0 |
220 |
|
if not fv1==None: out+=fv1 |
221 |
|
if not fv2==None: out+=fv2 |
222 |
|
if not fv3==None: out+=fv3 |
223 |
|
return out |