1 |
# $Id:$ |
2 |
|
3 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
4 |
http://www.access.edu.au |
5 |
Primary Business: Queensland, Australia""" |
6 |
__license__="""Licensed under the Open Software License version 3.0 |
7 |
http://www.opensource.org/licenses/osl-3.0.php""" |
8 |
|
9 |
from esys.escript import * |
10 |
from esys.escript.modelframe import Model,IterationDivergenceError |
11 |
from esys.escript.linearPDEs import LinearPDE |
12 |
|
13 |
class Mechanics(Model): |
14 |
""" |
15 |
base class for mechanics models in updated lagrangean framework |
16 |
|
17 |
@ivar domain: domain (in) |
18 |
@ivar displacement: current displacements |
19 |
|
20 |
""" |
21 |
def __init__(self,debug=False): |
22 |
""" |
23 |
set up the model |
24 |
|
25 |
@param debug: debug flag |
26 |
@type debug: C{bool} |
27 |
""" |
28 |
super(Mechanics, self).__init__(self,debug=debug) |
29 |
self.declareParameter(domain=None, \ |
30 |
displacement=None, \ |
31 |
stress=None, \ |
32 |
velocity=None, \ |
33 |
internal_force=Data(), \ |
34 |
external_force=Data(), \ |
35 |
prescribed_velocity=Data(), \ |
36 |
location_prescribed_velocity=Data(), \ |
37 |
temperature = None, \ |
38 |
expansion_coefficient = 0., \ |
39 |
bulk_modulus=1., \ |
40 |
shear_modulus=1., \ |
41 |
rel_tol=1.e-3,abs_tol=1.e-15,max_iter=10) |
42 |
self.__iter=0 |
43 |
|
44 |
def doInitialization(self): |
45 |
""" |
46 |
initialize model |
47 |
""" |
48 |
if not self.displacement: self.displacement=Vector(0.,ContinuousFunction(self.domain)) |
49 |
if not self.velocity: self.velocity=Vector(0.,ContinuousFunction(self.domain)) |
50 |
if not self.stress: self.stress=Tensor(0.,ContinuousFunction(self.domain)) |
51 |
self.__pde=LinearPDE(self.domain) |
52 |
self.__displacement_old=self.displacement |
53 |
self.stress_old=self.stress |
54 |
self.__velocity_old=self.velocity |
55 |
self.__temperature_old=self.temperature |
56 |
|
57 |
def doStepPreprocessing(self,dt): |
58 |
""" |
59 |
step up pressure iteration |
60 |
|
61 |
if run within a time dependend problem extrapolation of pressure from previous time steps is used to |
62 |
get an initial guess (that needs some work!!!!!!!) |
63 |
""" |
64 |
self.__iter=0 |
65 |
self.__diff=self.UNDEF_DT |
66 |
# set new values: |
67 |
self.displacement=self.__displacement_old |
68 |
self.stress=self.stress_old |
69 |
self.velocity=self.__velocity_old |
70 |
self.temperature=self.__temperature_old |
71 |
self.__velocity_last=self.velocity |
72 |
|
73 |
def doStep(self,dt): |
74 |
""" |
75 |
|
76 |
performs an iteration step of the penalty method. |
77 |
IterationDivergenceError is raised if pressure error cannot be reduced or max_iter is reached. |
78 |
|
79 |
requires self.S to be set |
80 |
updates the thermal stress increment |
81 |
|
82 |
""" |
83 |
k3=kronecker(self.domain) |
84 |
# set new thermal stress increment |
85 |
if self.temperature: |
86 |
self.dthermal_stress=self.bulk_modulus*self.self.expansion_coefficient*(self.temperature-self.__temperature_old) |
87 |
else: |
88 |
self.dthermal_stress=0. |
89 |
# set PDE coefficients: |
90 |
self.__pde.setValue(A=self.S) |
91 |
self.__pde.setValue(X=self.stress_old-self.dthermal_stress*k3) |
92 |
if self.internal_force: self.__pde.setValue(Y=self.internal_force) |
93 |
if self.external_force: self.__pde.setValue(y=self.external_force) |
94 |
print self.prescribed_velocity |
95 |
print self.location_prescribed_velocity |
96 |
self.__pde.setValue(r=self.prescribed_velocity, \ |
97 |
q=self.location_prescribed_velocity) |
98 |
# solve the PDE: |
99 |
self.__pde.setTolerance(self.rel_tol/100.) |
100 |
self.velocity=self.__pde.getSolution() |
101 |
# calculate convergence indicators: |
102 |
self.__diff,diff_old=Lsup(self.velocity-self.__velocity_last),self.__diff |
103 |
self.__velocity_last=self.velocity |
104 |
self.displacement=self.__displacement_old+dt*self.velocity |
105 |
self.__iter+=1 |
106 |
self.trace("velocity range %e:%e"%(inf(self.velocity),sup(self.velocity))) |
107 |
if self.__iter>2 and diff_old<self.__diff: |
108 |
raise IterationDivergenceError,"no improvement in stress iteration" |
109 |
if self.__iter>self.max_iter: |
110 |
raise IterationDivergenceError,"Maximum number of iterations steps reached" |
111 |
|
112 |
def terminateIteration(self): |
113 |
"""iteration is terminateIterationd if relative pressure change is less then rel_tol""" |
114 |
return self.__diff<=self.rel_tol*Lsup(self.velocity)+self.abs_tol |
115 |
|
116 |
def doStepPostprocessing(self,dt): |
117 |
""" |
118 |
accept all the values: |
119 |
""" |
120 |
self.displacement=self.__displacement_old |
121 |
self.stress=self.stress_old |
122 |
self.velocity=self.__velocity_old |
123 |
self.temperature=self.__temperature_old |
124 |
|
125 |
def getSafeTimeStepSize(self,dt): |
126 |
""" |
127 |
returns new step size |
128 |
""" |
129 |
d=Lsup(self.velocity-self.__velocity_old)/dt |
130 |
if d>0: |
131 |
return Lsup(self.displacement)/d |
132 |
else: |
133 |
return self.UNDEF_DT |
134 |
|
135 |
|
136 |
|
137 |
class DruckerPrager(Mechanics): |
138 |
""" |
139 |
|
140 |
""" |
141 |
|
142 |
def __init__(self,debug=False): |
143 |
""" |
144 |
set up model |
145 |
""" |
146 |
super(DruckerPrager, self).__init__(debug=debug) |
147 |
self.declareParameter(plastic_stress=0., |
148 |
friction_parameter=0., |
149 |
dilatancy_parameter=0., |
150 |
shear_length=0.) |
151 |
|
152 |
def doInitialization(self): |
153 |
""" |
154 |
initialize model |
155 |
""" |
156 |
super(DruckerPrager, self).doInitialization() |
157 |
self.__plastic_stress_old=self.plastic_stress |
158 |
self.__tau_y_old=self.shear_length |
159 |
|
160 |
def doStepPreprocessing(self,dt): |
161 |
""" |
162 |
step up pressure iteration |
163 |
|
164 |
if run within a time dependend problem extrapolation of pressure from previous time steps is used to |
165 |
get an initial guess (that needs some work!!!!!!!) |
166 |
""" |
167 |
super(DruckerPrager, self).doStepPreprocessing(dt) |
168 |
self.plastic_stress=self.__plastic_stress_old |
169 |
|
170 |
def doStep(self,dt): |
171 |
G=self.shear_modulus |
172 |
K=self.bulk_modulus |
173 |
alpha=self.friction_parameter |
174 |
beta=self.dilatancy_parameter |
175 |
tau_Y=self.shear_length |
176 |
if self.__plastic_stress_old: |
177 |
dps=self.plastic_stress-self.__plastic_stress_old |
178 |
h=(tau_Y-self.__tau_y_old)/(dps+self.abs_tol*whereZero(dps)) |
179 |
else: |
180 |
h=0 |
181 |
# set new tangential operator: |
182 |
self.S=self.getTangentialTensor(self.stress, |
183 |
tau_Y,G,K,alpha,beta,h) |
184 |
# do the update step: |
185 |
super(DruckerPrager, self).doStep(dt) |
186 |
|
187 |
# update stresses: |
188 |
self.stress,self.plastic_stress=self.getNewStress(self.stress_old,self.__plastic_stress_old, |
189 |
self.velocity*dt, |
190 |
self.dthermal_stress,tau_Y,G,K,alpha,beta,h) |
191 |
|
192 |
def doStepPostprocessing(self,dt): |
193 |
super(DruckerPrager, self).doStepPostprocessing(dt) |
194 |
self.plastic_stress=self.__plastic_stress_old=self.plastic_stress |
195 |
|
196 |
def getNewStress(self,s,gamma_p,du,ds_therm,tau_Y,G,K,alpha,beta,h): |
197 |
k3=kronecker(self.domain) |
198 |
dt=1. |
199 |
g=grad(du) |
200 |
D=symmetric(g) |
201 |
W=nonsymmetric(g) |
202 |
s_e=s+ds_therm+dt*(2*G*D+(K-2./3*G)*trace(D)*k3 \ |
203 |
+2*nonsymmetric(matrix_mult(W,s))) |
204 |
p_e=-1./3*trace(s_e) |
205 |
s_e_dev=s_e+p_e*k3 |
206 |
tau_e=sqrt(1./2*inner(s_e_dev,s_e_dev)) |
207 |
F=tau_e-alpha*p_e-tau_Y |
208 |
chi=whereNonNegative(F) |
209 |
l=chi*F/(h+G+beta*K) |
210 |
s=(1.-l*G/tau_e)*s_e_dev+(p_e+l*beta*K)*k3 |
211 |
gamma_p=gamma_p+l |
212 |
return s, gamma_p |
213 |
|
214 |
|
215 |
def getTangentialTensor(self,s,tau_Y,G,K,alpha,beta,h): |
216 |
d=self.domain.getDim() |
217 |
k3=kronecker(Function(self.domain)) |
218 |
p=-1./d*trace(s) |
219 |
s_dev=s+p*k3 |
220 |
tau=sqrt(1./2*inner(s_dev,s_dev)) |
221 |
chi=whereNonNegative(tau-alpha*p-tau_Y) |
222 |
sXk3=outer(s,k3) |
223 |
k3Xk3=outer(k3,k3) |
224 |
tmp=G*s_dev/tau |
225 |
S=G*(swap_axes(k3Xk3,1,2)+swap_axes(k3Xk3,1,3)) \ |
226 |
+ (K-2./3*G)*k3Xk3 \ |
227 |
+ sXk3-swap_axes(sXk3,1,3) \ |
228 |
+ 1./2*(swap_axes(sXk3,0,3)+swap_axes(sXk3,1,2) \ |
229 |
-swap_axes(sXk3,1,3)-swap_axes(sXk3,0,2)) |
230 |
# - chi/(h+G+alpha*beta*K)*outer(tmp+beta*K*k3,tmp+alpha*K*k3)\ |
231 |
return S |