1 |
# $Id:$ |
2 |
|
3 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
4 |
http://www.access.edu.au |
5 |
Primary Business: Queensland, Australia""" |
6 |
__license__="""Licensed under the Open Software License version 3.0 |
7 |
http://www.opensource.org/licenses/osl-3.0.php""" |
8 |
|
9 |
from esys.escript import * |
10 |
from esys.escript.modelframe import Model,IterationDivergenceError |
11 |
from esys.escript.linearPDEs import LinearPDE |
12 |
|
13 |
class Mechanics(Model): |
14 |
""" |
15 |
base class for mechanics models in updated lagrangean framework |
16 |
|
17 |
@ivar domain: domain (in) |
18 |
@ivar internal_force: =Data() |
19 |
@ivar external_force: =Data() |
20 |
@ivar prescribed_velocity: =Data() |
21 |
@ivar location_prescribed_velocity: =Data() |
22 |
@ivar temperature: = None |
23 |
@ivar expansion_coefficient: = 0. |
24 |
@ivar bulk_modulus: =1. |
25 |
@ivar shear_modulus: =1. |
26 |
@ivar rel_tol: =1.e-3 |
27 |
@ivar abs_tol: =1.e-15 |
28 |
@ivar max_iter: =10 |
29 |
@ivar displacement: =None |
30 |
@ivar stress: =None |
31 |
@ivar velocity: =None |
32 |
""" |
33 |
def __init__(self,debug=False): |
34 |
""" |
35 |
set up the model |
36 |
|
37 |
@param debug: debug flag |
38 |
@type debug: C{bool} |
39 |
""" |
40 |
super(Mechanics, self).__init__(self,debug=debug) |
41 |
self.declareParameter(domain=None, \ |
42 |
displacement=None, \ |
43 |
stress=None, \ |
44 |
velocity=None, \ |
45 |
internal_force=Data(), \ |
46 |
external_force=Data(), \ |
47 |
prescribed_velocity=Data(), \ |
48 |
location_prescribed_velocity=Data(), \ |
49 |
temperature = None, \ |
50 |
expansion_coefficient = 0., \ |
51 |
bulk_modulus=2., \ |
52 |
shear_modulus=1., \ |
53 |
rel_tol=1.e-3,abs_tol=1.e-15,max_iter=10) |
54 |
self.__iter=0 |
55 |
|
56 |
def doInitialization(self): |
57 |
""" |
58 |
initialize model |
59 |
""" |
60 |
if not self.displacement: self.displacement=Vector(0.,ContinuousFunction(self.domain)) |
61 |
if not self.velocity: self.velocity=Vector(0.,ContinuousFunction(self.domain)) |
62 |
if not self.stress: self.stress=Tensor(0.,ContinuousFunction(self.domain)) |
63 |
self.__pde=LinearPDE(self.domain) |
64 |
self.__pde.setSymmetryOn() |
65 |
self.__displacement_old=self.displacement |
66 |
self.stress_old=self.stress |
67 |
self.__velocity_old=self.velocity |
68 |
self.__temperature_old=self.temperature |
69 |
|
70 |
def doStepPreprocessing(self,dt): |
71 |
""" |
72 |
step up pressure iteration |
73 |
|
74 |
if run within a time dependend problem extrapolation of pressure from previous time steps is used to |
75 |
get an initial guess (that needs some work!!!!!!!) |
76 |
""" |
77 |
self.__iter=0 |
78 |
self.__diff=self.UNDEF_DT |
79 |
# set new values: |
80 |
self.displacement=self.__displacement_old |
81 |
self.stress=self.stress_old |
82 |
self.velocity=self.__velocity_old |
83 |
self.temperature=self.__temperature_old |
84 |
self.__velocity_last=self.velocity |
85 |
|
86 |
def doStep(self,dt): |
87 |
""" |
88 |
|
89 |
performs an iteration step of the penalty method. |
90 |
IterationDivergenceError is raised if pressure error cannot be reduced or max_iter is reached. |
91 |
|
92 |
requires self.S to be set |
93 |
updates the thermal stress increment |
94 |
|
95 |
""" |
96 |
k3=kronecker(self.domain) |
97 |
# set new thermal stress increment |
98 |
if self.temperature: |
99 |
self.deps_therm=self.self.expansion_coefficient*(self.temperature-self.__temperature_old) |
100 |
else: |
101 |
self.deps_therm=0. |
102 |
# set PDE coefficients: |
103 |
self.__pde.setValue(A=self.S) |
104 |
self.__pde.checkSymmetry() |
105 |
self.__pde.setValue(X=self.stress_old-self.bulk_modulus*self.deps_therm*k3) |
106 |
if self.internal_force: self.__pde.setValue(Y=self.internal_force) |
107 |
if self.external_force: self.__pde.setValue(y=self.external_force) |
108 |
self.__pde.setValue(r=self.prescribed_velocity, \ |
109 |
q=self.location_prescribed_velocity) |
110 |
# solve the PDE: |
111 |
self.__pde.setTolerance(self.rel_tol/100.) |
112 |
self.velocity=self.__pde.getSolution(verbose=True) |
113 |
# calculate convergence indicators: |
114 |
self.__diff,diff_old=Lsup(self.velocity-self.__velocity_last),self.__diff |
115 |
self.__velocity_last=self.velocity |
116 |
self.displacement=self.__displacement_old+dt*self.velocity |
117 |
self.__iter+=1 |
118 |
if self.debug: |
119 |
for i in range(self.domain.getDim()): |
120 |
self.trace("velocity %d range %e:%e"%(i,inf(self.velocity[i]),sup(self.velocity[i]))) |
121 |
self.trace("velocity increment %s"%self.__diff) |
122 |
if self.__iter>2 and diff_old<self.__diff: |
123 |
raise IterationDivergenceError,"no improvement in stress iteration" |
124 |
if self.__iter>self.max_iter: |
125 |
raise IterationDivergenceError,"Maximum number of iterations steps reached" |
126 |
|
127 |
def terminateIteration(self): |
128 |
"""iteration is terminateIterationd if relative pressure change is less then rel_tol""" |
129 |
return self.__diff<=self.rel_tol*Lsup(self.velocity)+self.abs_tol |
130 |
|
131 |
def doStepPostprocessing(self,dt): |
132 |
""" |
133 |
accept all the values: |
134 |
""" |
135 |
self.__displacement_old=self.displacement |
136 |
self.stress_old=self.stress |
137 |
self.__velocity_old=self.velocity |
138 |
self.__temperature_old=self.temperature |
139 |
|
140 |
def getSafeTimeStepSize(self,dt): |
141 |
""" |
142 |
returns new step size |
143 |
""" |
144 |
d=Lsup(self.velocity-self.__velocity_old)/dt |
145 |
if d>0: |
146 |
return Lsup(self.displacement)/d |
147 |
else: |
148 |
return self.UNDEF_DT |
149 |
|
150 |
|
151 |
|
152 |
class DruckerPrager(Mechanics): |
153 |
""" |
154 |
|
155 |
""" |
156 |
|
157 |
def __init__(self,debug=False): |
158 |
""" |
159 |
set up model |
160 |
""" |
161 |
super(DruckerPrager, self).__init__(debug=debug) |
162 |
self.declareParameter(plastic_stress=0., |
163 |
friction_parameter=0., |
164 |
dilatancy_parameter=0., |
165 |
shear_length=1.e15, |
166 |
hardening=0.) |
167 |
|
168 |
def doInitialization(self): |
169 |
""" |
170 |
initialize model |
171 |
""" |
172 |
super(DruckerPrager, self).doInitialization() |
173 |
self.__plastic_stress_old=self.plastic_stress |
174 |
self.__tau_y_old=self.shear_length |
175 |
self.__hardening_old=self.hardening |
176 |
|
177 |
def doStepPreprocessing(self,dt): |
178 |
""" |
179 |
step up pressure iteration |
180 |
|
181 |
if run within a time dependend problem extrapolation of pressure from previous time steps is used to |
182 |
get an initial guess (that needs some work!!!!!!!) |
183 |
""" |
184 |
super(DruckerPrager, self).doStepPreprocessing(dt) |
185 |
self.plastic_stress=self.__plastic_stress_old |
186 |
self.shear_length=self.__tau_y_old |
187 |
self.hardening=self.__hardening_old |
188 |
|
189 |
def doStep(self,dt): |
190 |
G=self.shear_modulus |
191 |
K=self.bulk_modulus |
192 |
alpha=self.friction_parameter |
193 |
beta=self.dilatancy_parameter |
194 |
tau_Y=self.shear_length |
195 |
h=self.hardening |
196 |
# set new tangential operator: |
197 |
self.S=self.getTangentialTensor(self.stress, |
198 |
tau_Y,G,K,alpha,beta,h) |
199 |
# do the update step: |
200 |
super(DruckerPrager, self).doStep(dt) |
201 |
|
202 |
# update stresses: |
203 |
self.stress,self.plastic_stress=self.getNewStress(self.stress_old,self.__plastic_stress_old, |
204 |
self.velocity*dt, |
205 |
self.deps_therm,tau_Y,G,K,alpha,beta,h) |
206 |
if self.__plastic_stress_old: |
207 |
dps=self.plastic_stress-self.__plastic_stress_old |
208 |
self.hardening=(tau_Y-self.__tau_y_old)/(dps+self.abs_tol*whereZero(dps)) |
209 |
else: |
210 |
self.hardening=0 |
211 |
|
212 |
def doStepPostprocessing(self,dt): |
213 |
super(DruckerPrager, self).doStepPostprocessing(dt) |
214 |
self.__plastic_stress_old=self.plastic_stress |
215 |
self.__tau_y_old=self.shear_length |
216 |
self.__hardening_old=self.hardening |
217 |
|
218 |
def getNewStress(self,s,gamma_p,du,deps_therm,tau_Y,G,K,alpha,beta,h): |
219 |
k3=kronecker(self.domain) |
220 |
dt=1. |
221 |
g=grad(du) |
222 |
D=symmetric(g) |
223 |
W=nonsymmetric(g) |
224 |
s_e=s+K*deps_therm*k3 +dt*(2*G*D+(K-2./3*G)*trace(D)*k3 \ |
225 |
+2*nonsymmetric(matrix_mult(W,s))) |
226 |
p_e=-1./3*trace(s_e) |
227 |
s_e_dev=s_e+p_e*k3 |
228 |
tau_e=sqrt(1./2*inner(s_e_dev,s_e_dev)) |
229 |
F=tau_e-alpha*p_e-tau_Y |
230 |
chi=whereNonNegative(F) |
231 |
l=chi*F/(h+G+beta*K) |
232 |
s=(1.-l*G/tau_e)*s_e_dev+(p_e+l*beta*K)*k3 |
233 |
gamma_p=gamma_p+l |
234 |
return s, gamma_p |
235 |
|
236 |
|
237 |
def getTangentialTensor(self,s,tau_Y,G,K,alpha,beta,h): |
238 |
d=self.domain.getDim() |
239 |
k3=kronecker(Function(self.domain)) |
240 |
p=-1./d*trace(s) |
241 |
s_dev=s+p*k3 |
242 |
tau=sqrt(1./2*inner(s_dev,s_dev)) |
243 |
chi=whereNonNegative(tau-alpha*p-tau_Y) |
244 |
sXk3=outer(s,k3) |
245 |
k3Xk3=outer(k3,k3) |
246 |
tmp=G*s_dev/(tau+tau_Y*1.e-15*whereZero(tau,1.e-15)) |
247 |
S=G*(swap_axes(k3Xk3,1,2)+swap_axes(k3Xk3,1,3)) \ |
248 |
+ (K-2./3*G)*k3Xk3 \ |
249 |
+ sXk3-swap_axes(sXk3,1,3) \ |
250 |
+ 1./2*(swap_axes(sXk3,0,3)-swap_axes(sXk3,1,2) \ |
251 |
-swap_axes(sXk3,1,3)+swap_axes(sXk3,0,2)) |
252 |
- chi/(h+G+alpha*beta*K)*outer(tmp+beta*K*k3,tmp+alpha*K*k3)\ |
253 |
# print S |
254 |
return S |