1 |
# $Id$ |
2 |
|
3 |
from esys.escript import * |
4 |
from esys.escript.modelframe import Model,IterationDivergenceError |
5 |
from esys.escript.linearPDEs import AdvectivePDE,LinearPDE |
6 |
import numarray |
7 |
|
8 |
|
9 |
class TemperatureAdvection(Model): |
10 |
""" |
11 |
|
12 |
The conservation of internal heat energy is given by |
13 |
|
14 |
M{S{rho} c_p ( dT/dt+v[j]*grad(T)[j])-grad(\kappa grad(T)_{,i}=Q} |
15 |
|
16 |
M{n_i\kappa T_{,i}=0} |
17 |
|
18 |
it is assummed that M{\rho c_p} is constant in time. |
19 |
|
20 |
solved by Taylor Galerkin method |
21 |
|
22 |
""" |
23 |
def __init__(self,debug=False): |
24 |
Model.__init__(self,debug=debug) |
25 |
self.declareParameter(domain=None, \ |
26 |
temperature=1., \ |
27 |
velocity=numarray.zeros([3]), |
28 |
density=1., \ |
29 |
heat_capacity=1., \ |
30 |
thermal_permabilty=1., \ |
31 |
# reference_temperature=0., \ |
32 |
# radiation_coefficient=0., \ |
33 |
thermal_source=0., \ |
34 |
fixed_temperature=0., |
35 |
location_fixed_temperature=Data(), |
36 |
safety_factor=0.1) |
37 |
|
38 |
def doInitialization(self): |
39 |
self.__pde=LinearPDE(self.domain) |
40 |
self.__pde.setSymmetryOn() |
41 |
self.__pde.setReducedOrderOn() |
42 |
self.__pde.setSolverMethod(self.__pde.LUMPING) |
43 |
self.__pde.setValue(D=self.heat_capacity*self.density) |
44 |
|
45 |
def getSafeTimeStepSize(self,dt): |
46 |
""" |
47 |
returns new step size |
48 |
""" |
49 |
h=self.domain.getSize() |
50 |
return self.safety_factor*inf(h**2/(h*abs(self.heat_capacity*self.density)*length(self.velocity)+self.thermal_permabilty)) |
51 |
|
52 |
def G(self,T,alpha): |
53 |
""" |
54 |
tangential operator for taylor galerikin |
55 |
""" |
56 |
g=grad(T) |
57 |
self.__pde.setValue(X=-self.thermal_permabilty*g, \ |
58 |
Y=self.thermal_source-self.__rhocp*inner(self.velocity,g), \ |
59 |
r=(self.__fixed_T-self.temperature)*alpha,\ |
60 |
q=self.location_fixed_temperature) |
61 |
return self.__pde.getSolution() |
62 |
|
63 |
|
64 |
def doStepPostprocessing(self,dt): |
65 |
""" |
66 |
perform taylor galerkin step |
67 |
""" |
68 |
T=self.temperature |
69 |
self.__rhocp=self.heat_capacity*self.density |
70 |
self.__fixed_T=self.fixed_temperature |
71 |
self.temperature=dt*self.G(dt/2*self.G(T,1./dt)+T,1./dt)+T |
72 |
self.trace("Temperature range is %e %e"%(inf(self.temperature),sup(self.temperature))) |