1 |
# $Id$ |
2 |
|
3 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
4 |
http://www.access.edu.au |
5 |
Primary Business: Queensland, Australia""" |
6 |
__license__="""Licensed under the Open Software License version 3.0 |
7 |
http://www.opensource.org/licenses/osl-3.0.php""" |
8 |
|
9 |
from esys.escript import * |
10 |
from esys.escript.modelframe import Model,IterationDivergenceError |
11 |
from esys.escript.linearPDEs import AdvectivePDE,LinearPDE |
12 |
import numarray |
13 |
|
14 |
|
15 |
class TemperatureAdvection(Model): |
16 |
""" |
17 |
|
18 |
The conservation of internal heat energy is given by |
19 |
|
20 |
M{S{rho} c_p ( dT/dt+v[j]*grad(T)[j])-grad(\kappa grad(T)_{,i}=Q} |
21 |
|
22 |
M{n_i\kappa T_{,i}=0} |
23 |
|
24 |
it is assummed that M{\rho c_p} is constant in time. |
25 |
|
26 |
solved by Taylor Galerkin method |
27 |
|
28 |
""" |
29 |
def __init__(self,debug=False): |
30 |
Model.__init__(self,debug=debug) |
31 |
self.declareParameter(domain=None, \ |
32 |
temperature=1., \ |
33 |
velocity=numarray.zeros([3]), |
34 |
density=1., \ |
35 |
heat_capacity=1., \ |
36 |
thermal_permabilty=1., \ |
37 |
# reference_temperature=0., \ |
38 |
# radiation_coefficient=0., \ |
39 |
thermal_source=0., \ |
40 |
fixed_temperature=0., |
41 |
location_fixed_temperature=Data(), |
42 |
safety_factor=0.1) |
43 |
|
44 |
def doInitialization(self): |
45 |
self.__pde=LinearPDE(self.domain) |
46 |
self.__pde.setSymmetryOn() |
47 |
self.__pde.setReducedOrderOn() |
48 |
self.__pde.setSolverMethod(self.__pde.LUMPING) |
49 |
self.__pde.setValue(D=self.heat_capacity*self.density) |
50 |
|
51 |
def getSafeTimeStepSize(self,dt): |
52 |
""" |
53 |
returns new step size |
54 |
""" |
55 |
h=self.domain.getSize() |
56 |
return self.safety_factor*inf(h**2/(h*abs(self.heat_capacity*self.density)*length(self.velocity)+self.thermal_permabilty)) |
57 |
|
58 |
def G(self,T,alpha): |
59 |
""" |
60 |
tangential operator for taylor galerikin |
61 |
""" |
62 |
g=grad(T) |
63 |
self.__pde.setValue(X=-self.thermal_permabilty*g, \ |
64 |
Y=self.thermal_source-self.__rhocp*inner(self.velocity,g), \ |
65 |
r=(self.__fixed_T-self.temperature)*alpha,\ |
66 |
q=self.location_fixed_temperature) |
67 |
return self.__pde.getSolution() |
68 |
|
69 |
|
70 |
def doStepPostprocessing(self,dt): |
71 |
""" |
72 |
perform taylor galerkin step |
73 |
""" |
74 |
T=self.temperature |
75 |
self.__rhocp=self.heat_capacity*self.density |
76 |
self.__fixed_T=self.fixed_temperature |
77 |
self.temperature=dt*self.G(dt/2*self.G(T,1./dt)+T,1./dt)+T |
78 |
self.trace("Temperature range is %e %e"%(inf(self.temperature),sup(self.temperature))) |