1 |
|
2 |
/* $Id$ */ |
3 |
|
4 |
/******************************************************* |
5 |
* |
6 |
* Copyright 2003-2007 by ACceSS MNRF |
7 |
* Copyright 2007 by University of Queensland |
8 |
* |
9 |
* http://esscc.uq.edu.au |
10 |
* Primary Business: Queensland, Australia |
11 |
* Licensed under the Open Software License version 3.0 |
12 |
* http://www.opensource.org/licenses/osl-3.0.php |
13 |
* |
14 |
*******************************************************/ |
15 |
|
16 |
/* PCG iterations */ |
17 |
|
18 |
#include "SystemMatrix.h" |
19 |
#include "Paso.h" |
20 |
#include "Solver.h" |
21 |
|
22 |
#ifdef _OPENMP |
23 |
#include <omp.h> |
24 |
#endif |
25 |
|
26 |
#ifdef PASO_MPI |
27 |
#include <mpi.h> |
28 |
#endif |
29 |
|
30 |
/* |
31 |
* |
32 |
* Purpose |
33 |
* ======= |
34 |
* |
35 |
* PCG solves the linear system A*x = b using the |
36 |
* preconditioned conjugate gradient method plus a smoother |
37 |
* A has to be symmetric. |
38 |
* |
39 |
* Convergence test: norm( b - A*x )< TOL. |
40 |
* For other measures, see the above reference. |
41 |
* |
42 |
* Arguments |
43 |
* ========= |
44 |
* |
45 |
* r (input) DOUBLE PRECISION array, dimension N. |
46 |
* On entry, residual of inital guess x |
47 |
* |
48 |
* x (input/output) DOUBLE PRECISION array, dimension N. |
49 |
* On input, the initial guess. |
50 |
* |
51 |
* ITER (input/output) INT |
52 |
* On input, the maximum iterations to be performed. |
53 |
* On output, actual number of iterations performed. |
54 |
* |
55 |
* INFO (output) INT |
56 |
* |
57 |
* = SOLVER_NO_ERROR: Successful exit. Iterated approximate solution returned. |
58 |
* = SOLVEr_MAXITER_REACHED |
59 |
* = SOLVER_INPUT_ERROR Illegal parameter: |
60 |
* = SOLVEr_BREAKDOWN: If parameters rHO or OMEGA become smaller |
61 |
* = SOLVER_MEMORY_ERROR : If parameters rHO or OMEGA become smaller |
62 |
* |
63 |
* ============================================================== |
64 |
*/ |
65 |
|
66 |
/* #define PASO_DYNAMIC_SCHEDULING_MVM */ |
67 |
|
68 |
#if defined PASO_DYNAMIC_SCHEDULING_MVM && defined __OPENMP |
69 |
#define USE_DYNAMIC_SCHEDULING |
70 |
#endif |
71 |
|
72 |
err_t Paso_Solver_PCG( |
73 |
Paso_SystemMatrix * A, |
74 |
double * r, |
75 |
double * x, |
76 |
dim_t *iter, |
77 |
double * tolerance, |
78 |
Paso_Performance* pp) { |
79 |
|
80 |
/* Local variables */ |
81 |
dim_t num_iter=0,maxit,num_iter_global, chunk_size=-1, len,rest, n_chunks, np, ipp; |
82 |
register double ss,ss1; |
83 |
dim_t i0, istart, iend; |
84 |
bool_t breakFlag=FALSE, maxIterFlag=FALSE, convergeFlag=FALSE; |
85 |
err_t status = SOLVER_NO_ERROR; |
86 |
dim_t n = Paso_SystemMatrix_getTotalNumRows(A); |
87 |
double *resid = tolerance, *rs=NULL, *p=NULL, *v=NULL, *x2=NULL ; |
88 |
double tau_old,tau,beta,delta,gamma_1,gamma_2,alpha,sum_1,sum_2,sum_3,sum_4,sum_5,tol; |
89 |
double norm_of_residual,norm_of_residual_global, loc_sum[2], sum[2]; |
90 |
register double r_tmp,d,rs_tmp,x2_tmp,x_tmp; |
91 |
char* chksz_chr; |
92 |
np=omp_get_max_threads(); |
93 |
|
94 |
#ifdef USE_DYNAMIC_SCHEDULING |
95 |
chksz_chr=getenv("PASO_CHUNK_SIZE_PCG"); |
96 |
if (chksz_chr!=NULL) sscanf(chksz_chr, "%d",&chunk_size); |
97 |
chunk_size=MIN(MAX(1,chunk_size),n/np); |
98 |
n_chunks=n/chunk_size; |
99 |
if (n_chunks*chunk_size<n) n_chunks+=1; |
100 |
#else |
101 |
len=n/np; |
102 |
rest=n-len*np; |
103 |
#endif |
104 |
/* */ |
105 |
/*-----------------------------------------------------------------*/ |
106 |
/* */ |
107 |
/* Start of Calculation : */ |
108 |
/* --------------------- */ |
109 |
/* */ |
110 |
/* */ |
111 |
rs=TMPMEMALLOC(n,double); |
112 |
p=TMPMEMALLOC(n,double); |
113 |
v=TMPMEMALLOC(n,double); |
114 |
x2=TMPMEMALLOC(n,double); |
115 |
|
116 |
/* Test the input parameters. */ |
117 |
|
118 |
if (n < 0) { |
119 |
status = SOLVER_INPUT_ERROR; |
120 |
} else if (rs==NULL || p==NULL || v==NULL || x2==NULL) { |
121 |
status = SOLVER_MEMORY_ERROR; |
122 |
} else { |
123 |
maxit = *iter; |
124 |
tol = *resid; |
125 |
Performance_startMonitor(pp,PERFORMANCE_SOLVER); |
126 |
/* initialize data */ |
127 |
#pragma omp parallel private(i0, istart, iend, ipp) |
128 |
{ |
129 |
#ifdef USE_DYNAMIC_SCHEDULING |
130 |
#pragma omp for schedule(dynamic, 1) |
131 |
for (ipp=0; ipp < n_chunks; ++ipp) { |
132 |
istart=chunk_size*ipp; |
133 |
iend=MIN(istart+chunk_size,n); |
134 |
#else |
135 |
#pragma omp for schedule(static) |
136 |
for (ipp=0; ipp <np; ++ipp) { |
137 |
istart=len*ipp+MIN(ipp,rest); |
138 |
iend=len*(ipp+1)+MIN(ipp+1,rest); |
139 |
#endif |
140 |
#pragma ivdep |
141 |
for (i0=istart;i0<iend;i0++) { |
142 |
rs[i0]=r[i0]; |
143 |
x2[i0]=x[i0]; |
144 |
p[i0]=0; |
145 |
v[i0]=0; |
146 |
} |
147 |
#ifdef USE_DYNAMIC_SCHEDULING |
148 |
} |
149 |
#else |
150 |
} |
151 |
#endif |
152 |
} |
153 |
num_iter=0; |
154 |
/* start of iteration */ |
155 |
while (!(convergeFlag || maxIterFlag || breakFlag)) { |
156 |
++(num_iter); |
157 |
/* v=prec(r) */ |
158 |
Performance_stopMonitor(pp,PERFORMANCE_SOLVER); |
159 |
Performance_startMonitor(pp,PERFORMANCE_PRECONDITIONER); |
160 |
Paso_Solver_solvePreconditioner(A,v,r); |
161 |
Performance_stopMonitor(pp,PERFORMANCE_PRECONDITIONER); |
162 |
Performance_startMonitor(pp,PERFORMANCE_SOLVER); |
163 |
/* tau=v*r */ |
164 |
sum_1 = 0; |
165 |
#pragma omp parallel private(i0, istart, iend, ipp, ss) |
166 |
{ |
167 |
ss=0; |
168 |
#ifdef USE_DYNAMIC_SCHEDULING |
169 |
#pragma omp for schedule(dynamic, 1) |
170 |
for (ipp=0; ipp < n_chunks; ++ipp) { |
171 |
istart=chunk_size*ipp; |
172 |
iend=MIN(istart+chunk_size,n); |
173 |
#else |
174 |
#pragma omp for schedule(static) |
175 |
for (ipp=0; ipp <np; ++ipp) { |
176 |
istart=len*ipp+MIN(ipp,rest); |
177 |
iend=len*(ipp+1)+MIN(ipp+1,rest); |
178 |
#endif |
179 |
#pragma ivdep |
180 |
for (i0=istart;i0<iend;i0++) ss+=v[i0]*r[i0]; |
181 |
#ifdef USE_DYNAMIC_SCHEDULING |
182 |
} |
183 |
#else |
184 |
} |
185 |
#endif |
186 |
#pragma omp critical |
187 |
{ |
188 |
sum_1+=ss; |
189 |
} |
190 |
} |
191 |
#ifdef PASO_MPI |
192 |
/* In case we have many MPI processes, each of which may have several OMP threads: |
193 |
OMP master participates in an MPI reduction to get global sum_1 */ |
194 |
loc_saum[0] = sum_1; |
195 |
MPI_Allreduce(loc_sum, &sum_1, 1, MPI_DOUBLE, MPI_SUM, A->mpi_info->comm); |
196 |
#endif |
197 |
tau_old=tau; |
198 |
tau=sum_1; |
199 |
/* p=v+beta*p */ |
200 |
#pragma omp parallel private(i0, istart, iend, ipp,beta) |
201 |
{ |
202 |
#ifdef USE_DYNAMIC_SCHEDULING |
203 |
#pragma omp for schedule(dynamic, 1) |
204 |
for (ipp=0; ipp < n_chunks; ++ipp) { |
205 |
istart=chunk_size*ipp; |
206 |
iend=MIN(istart+chunk_size,n); |
207 |
#else |
208 |
#pragma omp for schedule(static) |
209 |
for (ipp=0; ipp <np; ++ipp) { |
210 |
istart=len*ipp+MIN(ipp,rest); |
211 |
iend=len*(ipp+1)+MIN(ipp+1,rest); |
212 |
#endif |
213 |
if (num_iter==1) { |
214 |
#pragma ivdep |
215 |
for (i0=istart;i0<iend;i0++) p[i0]=v[i0]; |
216 |
} else { |
217 |
beta=tau/tau_old; |
218 |
#pragma ivdep |
219 |
for (i0=istart;i0<iend;i0++) p[i0]=v[i0]+beta*p[i0]; |
220 |
} |
221 |
#ifdef USE_DYNAMIC_SCHEDULING |
222 |
} |
223 |
#else |
224 |
} |
225 |
#endif |
226 |
} |
227 |
/* v=A*p */ |
228 |
Performance_stopMonitor(pp,PERFORMANCE_SOLVER); |
229 |
Performance_startMonitor(pp,PERFORMANCE_MVM); |
230 |
Paso_SystemMatrix_MatrixVector_CSR_OFFSET0(ONE, A, p,ZERO,v); |
231 |
Performance_stopMonitor(pp,PERFORMANCE_MVM); |
232 |
Performance_startMonitor(pp,PERFORMANCE_SOLVER); |
233 |
|
234 |
/* delta=p*v */ |
235 |
sum_2 = 0; |
236 |
#pragma omp parallel private(i0, istart, iend, ipp,ss) |
237 |
{ |
238 |
ss=0; |
239 |
#ifdef USE_DYNAMIC_SCHEDULING |
240 |
#pragma omp for schedule(dynamic, 1) |
241 |
for (ipp=0; ipp < n_chunks; ++ipp) { |
242 |
istart=chunk_size*ipp; |
243 |
iend=MIN(istart+chunk_size,n); |
244 |
#else |
245 |
#pragma omp for schedule(static) |
246 |
for (ipp=0; ipp <np; ++ipp) { |
247 |
istart=len*ipp+MIN(ipp,rest); |
248 |
iend=len*(ipp+1)+MIN(ipp+1,rest); |
249 |
#endif |
250 |
#pragma ivdep |
251 |
for (i0=istart;i0<iend;i0++) ss+=v[i0]*p[i0]; |
252 |
#ifdef USE_DYNAMIC_SCHEDULING |
253 |
} |
254 |
#else |
255 |
} |
256 |
#endif |
257 |
#pragma omp critical |
258 |
{ |
259 |
sum_2+=ss; |
260 |
} |
261 |
} |
262 |
#ifdef PASO_MPI |
263 |
loc_sum[0] = sum_2; |
264 |
MPI_Allreduce(loc_sum, &sum_2, 1, MPI_DOUBLE, MPI_SUM, A->mpi_info->comm); |
265 |
#endif |
266 |
delta=sum_2; |
267 |
alpha=tau/delta; |
268 |
|
269 |
if (! (breakFlag = (ABS(delta) <= TOLERANCE_FOR_SCALARS))) { |
270 |
/* smoother */ |
271 |
sum_3 = 0; |
272 |
sum_4 = 0; |
273 |
#pragma omp parallel private(i0, istart, iend, ipp,d, ss, ss1) |
274 |
{ |
275 |
ss=0; |
276 |
ss1=0; |
277 |
#ifdef USE_DYNAMIC_SCHEDULING |
278 |
#pragma omp for schedule(dynamic, 1) |
279 |
for (ipp=0; ipp < n_chunks; ++ipp) { |
280 |
istart=chunk_size*ipp; |
281 |
iend=MIN(istart+chunk_size,n); |
282 |
#else |
283 |
#pragma omp for schedule(static) |
284 |
for (ipp=0; ipp <np; ++ipp) { |
285 |
istart=len*ipp+MIN(ipp,rest); |
286 |
iend=len*(ipp+1)+MIN(ipp+1,rest); |
287 |
#endif |
288 |
#pragma ivdep |
289 |
for (i0=istart;i0<iend;i0++) { |
290 |
r[i0]-=alpha*v[i0]; |
291 |
d=r[i0]-rs[i0]; |
292 |
ss+=d*d; |
293 |
ss1+=d*rs[i0]; |
294 |
} |
295 |
#ifdef USE_DYNAMIC_SCHEDULING |
296 |
} |
297 |
#else |
298 |
} |
299 |
#endif |
300 |
#pragma omp critical |
301 |
{ |
302 |
sum_3+=ss; |
303 |
sum_4+=ss1; |
304 |
} |
305 |
} |
306 |
#ifdef PASO_MPI |
307 |
loc_sum[0] = sum_3; |
308 |
loc_sum[1] = sum_4; |
309 |
MPI_Allreduce(loc_sum, sum, 2, MPI_DOUBLE, MPI_SUM, A->mpi_info->comm); |
310 |
sum_3=sum[0]; |
311 |
sum_4=sum[1]; |
312 |
#endif |
313 |
sum_5 = 0; |
314 |
#pragma omp parallel private(i0, istart, iend, ipp, ss, gamma_1,gamma_2) |
315 |
{ |
316 |
gamma_1= ( (ABS(sum_3)<= ZERO) ? 0 : -sum_4/sum_3) ; |
317 |
gamma_2= ONE-gamma_1; |
318 |
ss=0; |
319 |
#ifdef USE_DYNAMIC_SCHEDULING |
320 |
#pragma omp for schedule(dynamic, 1) |
321 |
for (ipp=0; ipp < n_chunks; ++ipp) { |
322 |
istart=chunk_size*ipp; |
323 |
iend=MIN(istart+chunk_size,n); |
324 |
#else |
325 |
#pragma omp for schedule(static) |
326 |
for (ipp=0; ipp <np; ++ipp) { |
327 |
istart=len*ipp+MIN(ipp,rest); |
328 |
iend=len*(ipp+1)+MIN(ipp+1,rest); |
329 |
#endif |
330 |
#pragma ivdep |
331 |
for (i0=istart;i0<iend;i0++) { |
332 |
rs[i0]=gamma_2*rs[i0]+gamma_1*r[i0]; |
333 |
x2[i0]+=alpha*p[i0]; |
334 |
x[i0]=gamma_2*x[i0]+gamma_1*x2[i0]; |
335 |
ss+=rs[i0]*rs[i0]; |
336 |
} |
337 |
#ifdef USE_DYNAMIC_SCHEDULING |
338 |
} |
339 |
#else |
340 |
} |
341 |
#endif |
342 |
#pragma omp critical |
343 |
{ |
344 |
sum_5+=ss; |
345 |
} |
346 |
} |
347 |
#ifdef PASO_MPI |
348 |
loc_sum[0] = sum_5; |
349 |
MPI_Allreduce(loc_sum, &sum_5, 1, MPI_DOUBLE, MPI_SUM, A->mpi_info->comm); |
350 |
#endif |
351 |
norm_of_residual=sqrt(sum_5); |
352 |
convergeFlag = norm_of_residual <= tol; |
353 |
maxIterFlag = num_iter == maxit; |
354 |
breakFlag = (ABS(tau) <= TOLERANCE_FOR_SCALARS); |
355 |
} |
356 |
} |
357 |
/* end of iteration */ |
358 |
num_iter_global=num_iter; |
359 |
norm_of_residual_global=norm_of_residual; |
360 |
if (maxIterFlag) { |
361 |
status = SOLVER_MAXITER_REACHED; |
362 |
} else if (breakFlag) { |
363 |
status = SOLVER_BREAKDOWN; |
364 |
} |
365 |
Performance_stopMonitor(pp,PERFORMANCE_SOLVER); |
366 |
TMPMEMFREE(rs); |
367 |
TMPMEMFREE(x2); |
368 |
TMPMEMFREE(v); |
369 |
TMPMEMFREE(p); |
370 |
*iter=num_iter_global; |
371 |
*resid=norm_of_residual_global; |
372 |
} |
373 |
/* End of PCG */ |
374 |
return status; |
375 |
} |