1 |
|
2 |
/******************************************************* |
3 |
* |
4 |
* Copyright (c) 2003-2009 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
6 |
* http://www.uq.edu.au/esscc |
7 |
* |
8 |
* Primary Business: Queensland, Australia |
9 |
* Licensed under the Open Software License version 3.0 |
10 |
* http://www.opensource.org/licenses/osl-3.0.php |
11 |
* |
12 |
*******************************************************/ |
13 |
|
14 |
|
15 |
/**************************************************************/ |
16 |
|
17 |
/* Paso: SystemMatrix: sets-up the preconditioner */ |
18 |
|
19 |
/**************************************************************/ |
20 |
|
21 |
/* Copyrights by ACcESS Australia 2003/04 */ |
22 |
/* Author: Lutz Gross, l.gross@uq.edu.au */ |
23 |
|
24 |
/**************************************************************/ |
25 |
|
26 |
#include "Paso.h" |
27 |
#include "SystemMatrix.h" |
28 |
#include "Solver.h" |
29 |
|
30 |
/***********************************************************************************/ |
31 |
|
32 |
/* free space */ |
33 |
|
34 |
void Paso_Preconditioner_free(Paso_Solver_Preconditioner* in) { |
35 |
if (in!=NULL) { |
36 |
Paso_Solver_ILU_free(in->ilu); |
37 |
Paso_Solver_RILU_free(in->rilu); |
38 |
Paso_Solver_Jacobi_free(in->jacobi); |
39 |
Paso_Solver_GS_free(in->gs); |
40 |
Paso_Solver_AMG_free(in->amg); |
41 |
Paso_Solver_AMG_System_free(in->amgSystem); |
42 |
MEMFREE(in); |
43 |
} |
44 |
} |
45 |
/* call the iterative solver: */ |
46 |
|
47 |
void Paso_Solver_setPreconditioner(Paso_SystemMatrix* A,Paso_Options* options) { |
48 |
|
49 |
Paso_Solver_Preconditioner* prec=NULL; |
50 |
if (A->solver==NULL) { |
51 |
/* allocate structure to hold preconditioner */ |
52 |
prec=MEMALLOC(1,Paso_Solver_Preconditioner); |
53 |
prec->amgSystem=MEMALLOC(1,Paso_Solver_AMG_System); |
54 |
if (Paso_checkPtr(prec)) return; |
55 |
prec->type=UNKNOWN; |
56 |
prec->rilu=NULL; |
57 |
prec->ilu=NULL; |
58 |
prec->jacobi=NULL; |
59 |
prec->gs=NULL; |
60 |
prec->amg=NULL; |
61 |
prec->amgSystem->amgblock1=NULL; |
62 |
prec->amgSystem->amgblock2=NULL; |
63 |
prec->amgSystem->amgblock3=NULL; |
64 |
prec->amgSystem->block1=NULL; |
65 |
prec->amgSystem->block2=NULL; |
66 |
prec->amgSystem->block3=NULL; |
67 |
A->solver=prec; |
68 |
switch (options->preconditioner) { |
69 |
default: |
70 |
case PASO_JACOBI: |
71 |
if (options->verbose) printf("Jacobi preconditioner is used.\n"); |
72 |
prec->jacobi=Paso_Solver_getJacobi(A->mainBlock); |
73 |
prec->type=PASO_JACOBI; |
74 |
break; |
75 |
case PASO_ILU0: |
76 |
if (options->verbose) printf("ILU preconditioner is used.\n"); |
77 |
prec->ilu=Paso_Solver_getILU(A->mainBlock,options->verbose); |
78 |
prec->type=PASO_ILU0; |
79 |
break; |
80 |
case PASO_RILU: |
81 |
if (options->verbose) printf("RILU preconditioner is used.\n"); |
82 |
prec->rilu=Paso_Solver_getRILU(A->mainBlock,options->verbose); |
83 |
prec->type=PASO_RILU; |
84 |
break; |
85 |
case PASO_GS: |
86 |
if (options->verbose) printf("Gauss-Seidel preconditioner is used.\n"); |
87 |
prec->gs=Paso_Solver_getGS(A->mainBlock,options->verbose); |
88 |
prec->gs->sweeps=options->sweeps; |
89 |
prec->type=PASO_GS; |
90 |
break; |
91 |
case PASO_AMG: |
92 |
if (options->verbose) printf("AMG preconditioner is used.\n"); |
93 |
|
94 |
if (A->row_block_size==1) { |
95 |
prec->amg=Paso_Solver_getAMG(A->mainBlock,options->level_max,options); |
96 |
} |
97 |
else if (A->row_block_size==2) { |
98 |
|
99 |
prec->amgSystem->block1=Paso_SparseMatrix_getBlock(A->mainBlock,1); |
100 |
prec->amgSystem->block2=Paso_SparseMatrix_getBlock(A->mainBlock,2); |
101 |
|
102 |
prec->amgSystem->amgblock1=Paso_Solver_getAMG(prec->amgSystem->block1,options->level_max,options); |
103 |
prec->amgSystem->amgblock2=Paso_Solver_getAMG(prec->amgSystem->block2,options->level_max,options); |
104 |
|
105 |
} |
106 |
else if (A->row_block_size==3) |
107 |
{ |
108 |
|
109 |
prec->amgSystem->block1=Paso_SparseMatrix_getBlock(A->mainBlock,1); |
110 |
prec->amgSystem->block2=Paso_SparseMatrix_getBlock(A->mainBlock,2); |
111 |
prec->amgSystem->block3=Paso_SparseMatrix_getBlock(A->mainBlock,3); |
112 |
|
113 |
/* |
114 |
Paso_SparseMatrix_saveMM(prec->amgSystem->block1,"amgtemp1.mat"); |
115 |
Paso_SparseMatrix_saveMM(prec->amgSystem->block2,"amgtemp2.mat"); |
116 |
Paso_SparseMatrix_saveMM(prec->amgSystem->block3,"amgtemp3.mat"); |
117 |
*/ |
118 |
prec->amgSystem->amgblock1=Paso_Solver_getAMG(prec->amgSystem->block1,options->level_max,options); |
119 |
prec->amgSystem->amgblock2=Paso_Solver_getAMG(prec->amgSystem->block2,options->level_max,options); |
120 |
prec->amgSystem->amgblock3=Paso_Solver_getAMG(prec->amgSystem->block3,options->level_max,options); |
121 |
} |
122 |
prec->type=PASO_AMG; |
123 |
break; |
124 |
|
125 |
} |
126 |
if (! Paso_MPIInfo_noError(A->mpi_info ) ){ |
127 |
Paso_Preconditioner_free(prec); |
128 |
A->solver=NULL; |
129 |
} |
130 |
} |
131 |
} |
132 |
|
133 |
/* applies the preconditioner */ |
134 |
/* has to be called within a parallel reqion */ |
135 |
/* barrier synchronization is performed before the evaluation to make sure that the input vector is available */ |
136 |
void Paso_Solver_solvePreconditioner(Paso_SystemMatrix* A,double* x,double* b){ |
137 |
Paso_Solver_Preconditioner* prec=(Paso_Solver_Preconditioner*) A->solver; |
138 |
|
139 |
switch (prec->type) { |
140 |
default: |
141 |
case PASO_JACOBI: |
142 |
Paso_Solver_solveJacobi(prec->jacobi,x,b); |
143 |
break; |
144 |
case PASO_ILU0: |
145 |
Paso_Solver_solveILU(prec->ilu,x,b); |
146 |
break; |
147 |
case PASO_RILU: |
148 |
Paso_Solver_solveRILU(prec->rilu,x,b); |
149 |
break; |
150 |
case PASO_GS: |
151 |
/* Gauss-Seidel preconditioner P=U^{-1}DL^{-1} is used here with sweeps paramenter. |
152 |
We want to solve x_new=x_old+P^{-1}(b-Ax_old). So for fisrt 3 we will have the following: |
153 |
x_0=0 |
154 |
x_1=P^{-1}(b) |
155 |
|
156 |
b_old=b |
157 |
|
158 |
b_new=b_old+b |
159 |
x_2=x_1+P^{-1}(b-Ax_1)=P^{-1}(b)+P^{-1}(b)-P^{-1}AP^{-1}(b)) |
160 |
=P^{-1}(2b-AP^{-1}b)=P^{-1}(b_new-AP^{-1}b_old) |
161 |
b_old=b_new |
162 |
|
163 |
b_new=b_old+b |
164 |
x_3=....=P^{-1}(b_new-AP^{-1}b_old) |
165 |
b_old=b_new |
166 |
|
167 |
So for n- steps we will use loop, but we always make sure that every value calculated only once! |
168 |
*/ |
169 |
|
170 |
Paso_Solver_solveGS(prec->gs,x,b); |
171 |
if (prec->gs->sweeps>1) { |
172 |
double *bold=MEMALLOC(prec->gs->n*prec->gs->n_block,double); |
173 |
double *bnew=MEMALLOC(prec->gs->n*prec->gs->n_block,double); |
174 |
dim_t i; |
175 |
#pragma omp parallel for private(i) schedule(static) |
176 |
for (i=0;i<prec->gs->n*prec->gs->n_block;++i) bold[i]=b[i]; |
177 |
|
178 |
while(prec->gs->sweeps>1) { |
179 |
#pragma omp parallel for private(i) schedule(static) |
180 |
for (i=0;i<prec->gs->n*prec->gs->n_block;++i) bnew[i]=bold[i]+b[i]; |
181 |
/* Compute the residual b=b-Ax*/ |
182 |
Paso_SystemMatrix_MatrixVector_CSR_OFFSET0(DBLE(-1), A, x, DBLE(1), bnew); |
183 |
/* Go round again*/ |
184 |
Paso_Solver_solveGS(prec->gs,x,bnew); |
185 |
#pragma omp parallel for private(i) schedule(static) |
186 |
for (i=0;i<prec->gs->n*prec->gs->n_block;++i) bold[i]=bnew[i]; |
187 |
prec->gs->sweeps=prec->gs->sweeps-1; |
188 |
} |
189 |
|
190 |
MEMFREE(bold); |
191 |
MEMFREE(bnew); |
192 |
|
193 |
} |
194 |
break; |
195 |
case PASO_AMG: |
196 |
if (A->row_block_size==1) { |
197 |
Paso_Solver_solveAMG(prec->amg,x,b); |
198 |
} |
199 |
else if (A->row_block_size==2) { |
200 |
dim_t i; |
201 |
double *x1=MEMALLOC(prec->amgSystem->amgblock1->n,double); |
202 |
double *x2=MEMALLOC(prec->amgSystem->amgblock2->n,double); |
203 |
double *b1=MEMALLOC(prec->amgSystem->amgblock1->n,double); |
204 |
double *b2=MEMALLOC(prec->amgSystem->amgblock2->n,double); |
205 |
|
206 |
#pragma omp parallel for private(i) schedule(static) |
207 |
for (i=0;i<prec->amgSystem->amgblock1->n;i++) { |
208 |
b1[i]=b[2*i]; |
209 |
b2[i]=b[2*i+1]; |
210 |
} |
211 |
|
212 |
|
213 |
Paso_Solver_solveAMG(prec->amgSystem->amgblock1,x1,b1); |
214 |
Paso_Solver_solveAMG(prec->amgSystem->amgblock2,x2,b2); |
215 |
|
216 |
#pragma omp parallel for private(i) schedule(static) |
217 |
for (i=0;i<prec->amgSystem->amgblock1->n;i++) { |
218 |
x[2*i]=x1[i]; |
219 |
x[2*i+1]=x2[i]; |
220 |
} |
221 |
|
222 |
MEMFREE(x1); |
223 |
MEMFREE(x2); |
224 |
MEMFREE(b1); |
225 |
MEMFREE(b2); |
226 |
|
227 |
} |
228 |
else if (A->row_block_size==3) { |
229 |
dim_t i; |
230 |
|
231 |
double *x1=MEMALLOC(prec->amgSystem->amgblock1->n,double); |
232 |
double *x2=MEMALLOC(prec->amgSystem->amgblock2->n,double); |
233 |
double *x3=MEMALLOC(prec->amgSystem->amgblock3->n,double); |
234 |
double *b1=MEMALLOC(prec->amgSystem->amgblock1->n,double); |
235 |
double *b2=MEMALLOC(prec->amgSystem->amgblock2->n,double); |
236 |
double *b3=MEMALLOC(prec->amgSystem->amgblock3->n,double); |
237 |
|
238 |
#pragma omp parallel for private(i) schedule(static) |
239 |
for (i=0;i<prec->amgSystem->amgblock1->n;i++) { |
240 |
b1[i]=b[3*i]; |
241 |
b2[i]=b[3*i+1]; |
242 |
b3[i]=b[3*i+2]; |
243 |
} |
244 |
|
245 |
Paso_Solver_solveAMG(prec->amgSystem->amgblock1,x1,b1); |
246 |
Paso_Solver_solveAMG(prec->amgSystem->amgblock2,x2,b2); |
247 |
Paso_Solver_solveAMG(prec->amgSystem->amgblock3,x3,b3); |
248 |
|
249 |
#pragma omp parallel for private(i) schedule(static) |
250 |
for (i=0;i<prec->amgSystem->amgblock1->n;i++) { |
251 |
x[3*i]=x1[i]; |
252 |
x[3*i+1]=x2[i]; |
253 |
x[3*i+2]=x3[i]; |
254 |
} |
255 |
|
256 |
MEMFREE(x1); |
257 |
MEMFREE(x2); |
258 |
MEMFREE(x3); |
259 |
MEMFREE(b1); |
260 |
MEMFREE(b2); |
261 |
MEMFREE(b3); |
262 |
} |
263 |
break; |
264 |
} |
265 |
|
266 |
} |