1 |
/* $Id$ */ |
2 |
|
3 |
|
4 |
/* |
5 |
******************************************************************************** |
6 |
* Copyright 2006 by ACcESS MNRF * |
7 |
* * |
8 |
* http://www.access.edu.au * |
9 |
* Primary Business: Queensland, Australia * |
10 |
* Licensed under the Open Software License version 3.0 * |
11 |
* http://www.opensource.org/licenses/osl-3.0.php * |
12 |
******************************************************************************** |
13 |
*/ |
14 |
|
15 |
/* |
16 |
* Purpose |
17 |
* ======= |
18 |
* |
19 |
* GMRES solves the linear system A*x=b using the |
20 |
* truncated and restered GMRES method with preconditioning. |
21 |
* |
22 |
* Convergence test: norm( b - A*x )< TOL. |
23 |
* |
24 |
* |
25 |
* |
26 |
* Arguments |
27 |
* ========= |
28 |
* |
29 |
* r (input/output) double array, dimension n. |
30 |
* On entry, residual of inital guess X |
31 |
* |
32 |
* x (input/output) double array, dimension n. |
33 |
* On input, the initial guess. |
34 |
* |
35 |
* iter (input/output) int |
36 |
* On input, the maximum num_iterations to be performed. |
37 |
* On output, actual number of num_iterations performed. |
38 |
* |
39 |
* tolerance (input/output) DOUBLE PRECISION |
40 |
* On input, the allowable convergence measure for |
41 |
* norm( b - A*x ) |
42 |
* On output, the final value of this measure. |
43 |
* |
44 |
* Length_of_recursion (input) gives the number of residual to be kept in orthogonalization process |
45 |
* |
46 |
* restart (input) If restart>0, iteration is resterted a after restart steps. |
47 |
* |
48 |
* INFO (output) int |
49 |
* |
50 |
* =SOLVER_NO_ERROR: Successful exit. num_iterated approximate solution returned. |
51 |
* =SOLVER_MAXNUM_ITER_REACHED |
52 |
* =SOLVER_INPUT_ERROR Illegal parameter: |
53 |
* =SOLVER_BREAKDOWN: bad luck! |
54 |
* =SOLVER_MEMORY_ERROR : no memory available |
55 |
* |
56 |
* ============================================================== |
57 |
*/ |
58 |
|
59 |
#include "../Common.h" |
60 |
#include "../SystemMatrix.h" |
61 |
#include "Solver.h" |
62 |
#ifdef _OPENMP |
63 |
#include <omp.h> |
64 |
#endif |
65 |
|
66 |
err_t Paso_Solver_GMRES( |
67 |
Paso_SystemMatrix * A, |
68 |
double * r, |
69 |
double * x, |
70 |
dim_t *iter, |
71 |
double * tolerance,dim_t Length_of_recursion,dim_t restart, |
72 |
Paso_Performance* pp) { |
73 |
|
74 |
/* Local variables */ |
75 |
|
76 |
double *AP,*X_PRES[MAX(Length_of_recursion,0)+1],*R_PRES[MAX(Length_of_recursion,0)+1],*P_PRES[MAX(Length_of_recursion,0)+1]; |
77 |
double P_PRES_dot_AP[MAX(Length_of_recursion,0)],R_PRES_dot_P_PRES[MAX(Length_of_recursion,0)+1],BREAKF[MAX(Length_of_recursion,0)+1],ALPHA[MAX(Length_of_recursion,0)]; |
78 |
double P_PRES_dot_AP0,P_PRES_dot_AP1,P_PRES_dot_AP2,P_PRES_dot_AP3,P_PRES_dot_AP4,P_PRES_dot_AP5,P_PRES_dot_AP6,R_PRES_dot_P,abs_RP,breakf0; |
79 |
double tol,Factor,sum_BREAKF,gamma,SC1,SC2,norm_of_residual,diff,L2_R,Norm_of_residual_global; |
80 |
double *save_XPRES, *save_P_PRES, *save_R_PRES,save_R_PRES_dot_P_PRES; |
81 |
dim_t maxit,Num_iter_global,num_iter_restart,num_iter; |
82 |
dim_t i,z,order; |
83 |
bool_t breakFlag=FALSE, maxIterFlag=FALSE, convergeFlag=FALSE,restartFlag=FALSE; |
84 |
err_t Status=SOLVER_NO_ERROR; |
85 |
|
86 |
/* adapt original routine parameters */ |
87 |
|
88 |
dim_t n=A->num_cols * A-> col_block_size; |
89 |
dim_t Length_of_mem=MAX(Length_of_recursion,0)+1; |
90 |
|
91 |
/* Test the input parameters. */ |
92 |
if (restart>0) restart=MAX(Length_of_recursion,restart); |
93 |
if (n < 0 || Length_of_recursion<=0) { |
94 |
return SOLVER_INPUT_ERROR; |
95 |
} |
96 |
|
97 |
/* allocate memory: */ |
98 |
|
99 |
AP=TMPMEMALLOC(n,double); |
100 |
if (AP==NULL) Status=SOLVER_MEMORY_ERROR; |
101 |
for (i=0;i<Length_of_mem;i++) { |
102 |
X_PRES[i]=TMPMEMALLOC(n,double); |
103 |
R_PRES[i]=TMPMEMALLOC(n,double); |
104 |
P_PRES[i]=TMPMEMALLOC(n,double); |
105 |
if (X_PRES[i]==NULL || R_PRES[i]==NULL || P_PRES[i]==NULL) Status=SOLVER_MEMORY_ERROR; |
106 |
} |
107 |
if ( Status ==SOLVER_NO_ERROR ) { |
108 |
|
109 |
/* now PRES starts : */ |
110 |
maxit=*iter; |
111 |
tol=*tolerance; |
112 |
|
113 |
#pragma omp parallel firstprivate(maxit,tol,convergeFlag,maxIterFlag,breakFlag) \ |
114 |
private(num_iter,i,num_iter_restart,order,sum_BREAKF,gamma,restartFlag,norm_of_residual,abs_RP,breakf0,\ |
115 |
save_XPRES,save_P_PRES,save_R_PRES,save_R_PRES_dot_P_PRES) |
116 |
{ |
117 |
/* initialization */ |
118 |
|
119 |
restartFlag=TRUE; |
120 |
num_iter=0; |
121 |
#pragma omp for private(z) schedule(static) nowait |
122 |
for (z=0; z < n; ++z) AP[z]=0; |
123 |
for(i=0;i<Length_of_mem;++i) { |
124 |
#pragma omp for private(z) schedule(static) nowait |
125 |
for (z=0; z < n; ++z) { |
126 |
P_PRES[i][z]=0; |
127 |
R_PRES[i][z]=0; |
128 |
X_PRES[i][z]=0; |
129 |
} |
130 |
} |
131 |
|
132 |
while (! (convergeFlag || maxIterFlag || breakFlag)) { |
133 |
#pragma omp barrier |
134 |
if (restartFlag) { |
135 |
#pragma omp master |
136 |
BREAKF[0]=ONE; |
137 |
#pragma omp for private(z) schedule(static) nowait |
138 |
for (z=0; z < n; ++z) { |
139 |
R_PRES[0][z]=r[z]; |
140 |
X_PRES[0][z]=x[z]; |
141 |
} |
142 |
num_iter_restart=0; |
143 |
restartFlag=FALSE; |
144 |
} |
145 |
++num_iter; |
146 |
++num_iter_restart; |
147 |
/* order is the dimension of the space on which the residual is minimized: */ |
148 |
order=MIN(num_iter_restart,Length_of_recursion); |
149 |
/*** |
150 |
*** calculate new search direction P from R_PRES |
151 |
***/ |
152 |
#pragma omp barrier |
153 |
Paso_Solver_solvePreconditioner(A,&P_PRES[0][0], &R_PRES[0][0]); |
154 |
/*** |
155 |
*** apply A to P to get AP |
156 |
***/ |
157 |
#pragma omp barrier |
158 |
Paso_SystemMatrix_MatrixVector_CSR_OFFSET0(ONE, A, &P_PRES[0][0],ZERO, &AP[0]); |
159 |
/*** |
160 |
***** calculation of the norm of R and the scalar products of |
161 |
*** the residuals and A*P: |
162 |
***/ |
163 |
if (order==0) { |
164 |
#pragma omp master |
165 |
R_PRES_dot_P=ZERO; |
166 |
#pragma omp barrier |
167 |
#pragma omp for private(z) reduction(+:R_PRES_dot_P) schedule(static) |
168 |
for (z=0;z<n;++z) |
169 |
R_PRES_dot_P+=R_PRES[0][z]*P_PRES[0][z]; |
170 |
#pragma omp master |
171 |
R_PRES_dot_P_PRES[0]=R_PRES_dot_P; |
172 |
} else if (order==1) { |
173 |
#pragma omp master |
174 |
{ |
175 |
R_PRES_dot_P=ZERO; |
176 |
P_PRES_dot_AP0=ZERO; |
177 |
} |
178 |
#pragma omp barrier |
179 |
#pragma omp for private(z) reduction(+:R_PRES_dot_P,P_PRES_dot_AP0) schedule(static) |
180 |
for (z=0;z<n;++z) { |
181 |
R_PRES_dot_P+=R_PRES[0][z]*P_PRES[0][z]; |
182 |
P_PRES_dot_AP0+=P_PRES[0][z]*AP[z]; |
183 |
} |
184 |
#pragma omp master |
185 |
{ |
186 |
P_PRES_dot_AP[0]=P_PRES_dot_AP0; |
187 |
R_PRES_dot_P_PRES[0]=R_PRES_dot_P; |
188 |
} |
189 |
} else if (order==2) { |
190 |
#pragma omp master |
191 |
{ |
192 |
R_PRES_dot_P=ZERO; |
193 |
P_PRES_dot_AP0=ZERO; |
194 |
P_PRES_dot_AP1=ZERO; |
195 |
} |
196 |
#pragma omp barrier |
197 |
#pragma omp for private(z) reduction(+:R_PRES_dot_P,P_PRES_dot_AP0,P_PRES_dot_AP1) schedule(static) |
198 |
for (z=0;z<n;++z) { |
199 |
R_PRES_dot_P+=R_PRES[0][z]*P_PRES[0][z]; |
200 |
P_PRES_dot_AP0+=P_PRES[0][z]*AP[z]; |
201 |
P_PRES_dot_AP1+=P_PRES[1][z]*AP[z]; |
202 |
} |
203 |
#pragma omp master |
204 |
{ |
205 |
P_PRES_dot_AP[0]=P_PRES_dot_AP0; |
206 |
P_PRES_dot_AP[1]=P_PRES_dot_AP1; |
207 |
R_PRES_dot_P_PRES[0]=R_PRES_dot_P; |
208 |
} |
209 |
} else if (order==3) { |
210 |
#pragma omp master |
211 |
{ |
212 |
R_PRES_dot_P=ZERO; |
213 |
P_PRES_dot_AP0=ZERO; |
214 |
P_PRES_dot_AP1=ZERO; |
215 |
P_PRES_dot_AP2=ZERO; |
216 |
} |
217 |
#pragma omp barrier |
218 |
#pragma omp for private(z) reduction(+:R_PRES_dot_P,P_PRES_dot_AP0,P_PRES_dot_AP1,P_PRES_dot_AP2) schedule(static) |
219 |
for (z=0;z<n;++z) { |
220 |
R_PRES_dot_P+=R_PRES[0][z]*P_PRES[0][z]; |
221 |
P_PRES_dot_AP0+=P_PRES[0][z]*AP[z]; |
222 |
P_PRES_dot_AP1+=P_PRES[1][z]*AP[z]; |
223 |
P_PRES_dot_AP2+=P_PRES[2][z]*AP[z]; |
224 |
} |
225 |
#pragma omp master |
226 |
{ |
227 |
P_PRES_dot_AP[0]=P_PRES_dot_AP0; |
228 |
P_PRES_dot_AP[1]=P_PRES_dot_AP1; |
229 |
P_PRES_dot_AP[2]=P_PRES_dot_AP2; |
230 |
R_PRES_dot_P_PRES[0]=R_PRES_dot_P; |
231 |
} |
232 |
} else if (order==4) { |
233 |
#pragma omp master |
234 |
{ |
235 |
R_PRES_dot_P=ZERO; |
236 |
P_PRES_dot_AP0=ZERO; |
237 |
P_PRES_dot_AP1=ZERO; |
238 |
P_PRES_dot_AP2=ZERO; |
239 |
P_PRES_dot_AP3=ZERO; |
240 |
} |
241 |
#pragma omp barrier |
242 |
#pragma omp for private(z) reduction(+:R_PRES_dot_P,P_PRES_dot_AP0,P_PRES_dot_AP1,P_PRES_dot_AP2,P_PRES_dot_AP3) schedule(static) |
243 |
for (z=0;z<n;++z) { |
244 |
R_PRES_dot_P+=R_PRES[0][z]*P_PRES[0][z]; |
245 |
P_PRES_dot_AP0+=P_PRES[0][z]*AP[z]; |
246 |
P_PRES_dot_AP1+=P_PRES[1][z]*AP[z]; |
247 |
P_PRES_dot_AP2+=P_PRES[2][z]*AP[z]; |
248 |
P_PRES_dot_AP3+=P_PRES[3][z]*AP[z]; |
249 |
} |
250 |
#pragma omp master |
251 |
{ |
252 |
P_PRES_dot_AP[0]=P_PRES_dot_AP0; |
253 |
P_PRES_dot_AP[1]=P_PRES_dot_AP1; |
254 |
P_PRES_dot_AP[2]=P_PRES_dot_AP2; |
255 |
P_PRES_dot_AP[3]=P_PRES_dot_AP3; |
256 |
R_PRES_dot_P_PRES[0]=R_PRES_dot_P; |
257 |
} |
258 |
} else if (order==5) { |
259 |
#pragma omp master |
260 |
{ |
261 |
R_PRES_dot_P=ZERO; |
262 |
P_PRES_dot_AP0=ZERO; |
263 |
P_PRES_dot_AP1=ZERO; |
264 |
P_PRES_dot_AP2=ZERO; |
265 |
P_PRES_dot_AP3=ZERO; |
266 |
P_PRES_dot_AP4=ZERO; |
267 |
} |
268 |
#pragma omp barrier |
269 |
#pragma omp for private(z) reduction(+:R_PRES_dot_P,P_PRES_dot_AP0,P_PRES_dot_AP1,P_PRES_dot_AP2,P_PRES_dot_AP3,P_PRES_dot_AP4) schedule(static) |
270 |
for (z=0;z<n;++z) { |
271 |
R_PRES_dot_P+=R_PRES[0][z]*P_PRES[0][z]; |
272 |
P_PRES_dot_AP0+=P_PRES[0][z]*AP[z]; |
273 |
P_PRES_dot_AP1+=P_PRES[1][z]*AP[z]; |
274 |
P_PRES_dot_AP2+=P_PRES[2][z]*AP[z]; |
275 |
P_PRES_dot_AP3+=P_PRES[3][z]*AP[z]; |
276 |
P_PRES_dot_AP4+=P_PRES[4][z]*AP[z]; |
277 |
} |
278 |
#pragma omp master |
279 |
{ |
280 |
P_PRES_dot_AP[0]=P_PRES_dot_AP0; |
281 |
P_PRES_dot_AP[1]=P_PRES_dot_AP1; |
282 |
P_PRES_dot_AP[2]=P_PRES_dot_AP2; |
283 |
P_PRES_dot_AP[3]=P_PRES_dot_AP3; |
284 |
P_PRES_dot_AP[4]=P_PRES_dot_AP4; |
285 |
R_PRES_dot_P_PRES[0]=R_PRES_dot_P; |
286 |
} |
287 |
} else if (order==6) { |
288 |
#pragma omp master |
289 |
{ |
290 |
R_PRES_dot_P=ZERO; |
291 |
P_PRES_dot_AP0=ZERO; |
292 |
P_PRES_dot_AP1=ZERO; |
293 |
P_PRES_dot_AP2=ZERO; |
294 |
P_PRES_dot_AP3=ZERO; |
295 |
P_PRES_dot_AP4=ZERO; |
296 |
P_PRES_dot_AP5=ZERO; |
297 |
} |
298 |
#pragma omp barrier |
299 |
#pragma omp for private(z) reduction(+:R_PRES_dot_P,P_PRES_dot_AP0,P_PRES_dot_AP1,P_PRES_dot_AP2,P_PRES_dot_AP3,P_PRES_dot_AP4,P_PRES_dot_AP5) schedule(static) |
300 |
for (z=0;z<n;++z) { |
301 |
R_PRES_dot_P+=R_PRES[0][z]*P_PRES[0][z]; |
302 |
P_PRES_dot_AP0+=P_PRES[0][z]*AP[z]; |
303 |
P_PRES_dot_AP1+=P_PRES[1][z]*AP[z]; |
304 |
P_PRES_dot_AP2+=P_PRES[2][z]*AP[z]; |
305 |
P_PRES_dot_AP3+=P_PRES[3][z]*AP[z]; |
306 |
P_PRES_dot_AP4+=P_PRES[4][z]*AP[z]; |
307 |
P_PRES_dot_AP5+=P_PRES[5][z]*AP[z]; |
308 |
} |
309 |
#pragma omp master |
310 |
{ |
311 |
P_PRES_dot_AP[0]=P_PRES_dot_AP0; |
312 |
P_PRES_dot_AP[1]=P_PRES_dot_AP1; |
313 |
P_PRES_dot_AP[2]=P_PRES_dot_AP2; |
314 |
P_PRES_dot_AP[3]=P_PRES_dot_AP3; |
315 |
P_PRES_dot_AP[4]=P_PRES_dot_AP4; |
316 |
P_PRES_dot_AP[5]=P_PRES_dot_AP5; |
317 |
R_PRES_dot_P_PRES[0]=R_PRES_dot_P; |
318 |
} |
319 |
} else if (order>6) { |
320 |
#pragma omp master |
321 |
{ |
322 |
R_PRES_dot_P=ZERO; |
323 |
P_PRES_dot_AP0=ZERO; |
324 |
P_PRES_dot_AP1=ZERO; |
325 |
P_PRES_dot_AP2=ZERO; |
326 |
P_PRES_dot_AP3=ZERO; |
327 |
P_PRES_dot_AP4=ZERO; |
328 |
P_PRES_dot_AP5=ZERO; |
329 |
P_PRES_dot_AP6=ZERO; |
330 |
} |
331 |
#pragma omp barrier |
332 |
#pragma omp for private(z) reduction(+:R_PRES_dot_P,P_PRES_dot_AP0,P_PRES_dot_AP1,P_PRES_dot_AP2,P_PRES_dot_AP3,P_PRES_dot_AP4,P_PRES_dot_AP5,P_PRES_dot_AP6) schedule(static) |
333 |
for (z=0;z<n;++z) { |
334 |
R_PRES_dot_P+=R_PRES[0][z]*P_PRES[0][z]; |
335 |
P_PRES_dot_AP0+=P_PRES[0][z]*AP[z]; |
336 |
P_PRES_dot_AP1+=P_PRES[1][z]*AP[z]; |
337 |
P_PRES_dot_AP2+=P_PRES[2][z]*AP[z]; |
338 |
P_PRES_dot_AP3+=P_PRES[3][z]*AP[z]; |
339 |
P_PRES_dot_AP4+=P_PRES[4][z]*AP[z]; |
340 |
P_PRES_dot_AP5+=P_PRES[5][z]*AP[z]; |
341 |
P_PRES_dot_AP6+=P_PRES[6][z]*AP[z]; |
342 |
} |
343 |
#pragma omp master |
344 |
{ |
345 |
P_PRES_dot_AP[0]=P_PRES_dot_AP0; |
346 |
P_PRES_dot_AP[1]=P_PRES_dot_AP1; |
347 |
P_PRES_dot_AP[2]=P_PRES_dot_AP2; |
348 |
P_PRES_dot_AP[3]=P_PRES_dot_AP3; |
349 |
P_PRES_dot_AP[4]=P_PRES_dot_AP4; |
350 |
P_PRES_dot_AP[5]=P_PRES_dot_AP5; |
351 |
P_PRES_dot_AP[6]=P_PRES_dot_AP6; |
352 |
R_PRES_dot_P_PRES[0]=R_PRES_dot_P; |
353 |
|
354 |
P_PRES_dot_AP0=ZERO; |
355 |
} |
356 |
for (i=7;i<order;++i) { |
357 |
#pragma omp barrier |
358 |
#pragma omp for private(z) reduction(+:P_PRES_dot_AP0) schedule(static) |
359 |
for (z=0;z<n;++z) P_PRES_dot_AP0+=P_PRES[i][z]*AP[z]; |
360 |
#pragma omp master |
361 |
{ |
362 |
P_PRES_dot_AP[i]=P_PRES_dot_AP0; |
363 |
P_PRES_dot_AP0=ZERO; |
364 |
} |
365 |
} |
366 |
} |
367 |
/* this fixes a problem with the intel compiler */ |
368 |
#pragma omp master |
369 |
P_PRES_dot_AP0=R_PRES_dot_P_PRES[0]; |
370 |
/*** if sum_BREAKF is equal to zero a breakdown occurs. |
371 |
*** iteration procedure can be continued but R_PRES is not the |
372 |
*** residual of X_PRES approximation. |
373 |
***/ |
374 |
#pragma omp barrier |
375 |
sum_BREAKF=0.; |
376 |
for (i=0;i<order;++i) sum_BREAKF +=BREAKF[i]; |
377 |
breakFlag=!((ABS(P_PRES_dot_AP0) > ZERO) && (sum_BREAKF >ZERO)); |
378 |
if (!breakFlag) { |
379 |
breakFlag=FALSE; |
380 |
/*** |
381 |
***** X_PRES and R_PRES are moved to memory: |
382 |
***/ |
383 |
#pragma omp master |
384 |
{ |
385 |
Factor=0.; |
386 |
for (i=0;i<order;++i) { |
387 |
ALPHA[i]=-P_PRES_dot_AP[i]/R_PRES_dot_P_PRES[i]; |
388 |
Factor+=BREAKF[i]*ALPHA[i]; |
389 |
} |
390 |
|
391 |
save_R_PRES_dot_P_PRES=R_PRES_dot_P_PRES[Length_of_mem-1]; |
392 |
save_R_PRES=R_PRES[Length_of_mem-1]; |
393 |
save_XPRES=X_PRES[Length_of_mem-1]; |
394 |
save_P_PRES=P_PRES[Length_of_mem-1]; |
395 |
for (i=Length_of_mem-1;i>0;--i) { |
396 |
BREAKF[i]=BREAKF[i-1]; |
397 |
R_PRES_dot_P_PRES[i]=R_PRES_dot_P_PRES[i-1]; |
398 |
R_PRES[i]=R_PRES[i-1]; |
399 |
X_PRES[i]=X_PRES[i-1]; |
400 |
P_PRES[i]=P_PRES[i-1]; |
401 |
} |
402 |
R_PRES_dot_P_PRES[0]=save_R_PRES_dot_P_PRES; |
403 |
R_PRES[0]=save_R_PRES; |
404 |
X_PRES[0]=save_XPRES; |
405 |
P_PRES[0]=save_P_PRES; |
406 |
|
407 |
if (ABS(Factor)<=ZERO) { |
408 |
Factor=1.; |
409 |
BREAKF[0]=ZERO; |
410 |
} else { |
411 |
Factor=1./Factor; |
412 |
BREAKF[0]=ONE; |
413 |
} |
414 |
for (i=0;i<order;++i) ALPHA[i]*=Factor; |
415 |
} |
416 |
/* |
417 |
***** update of solution X_PRES and its residual R_PRES: |
418 |
*** |
419 |
*** P is used to accumulate X and AP to accumulate R. X and R |
420 |
*** are still needed until they are put into the X and R memory |
421 |
*** R_PRES and X_PRES |
422 |
*** |
423 |
**/ |
424 |
#pragma omp barrier |
425 |
breakf0=BREAKF[0]; |
426 |
if (order==0) { |
427 |
#pragma omp for private(z) schedule(static) |
428 |
for (z=0;z<n;++z) { |
429 |
R_PRES[0][z]= Factor* AP[z]; |
430 |
X_PRES[0][z]=-Factor*P_PRES[1][z]; |
431 |
} |
432 |
} else if (order==1) { |
433 |
#pragma omp for private(z) schedule(static) |
434 |
for (z=0;z<n;++z) { |
435 |
R_PRES[0][z]= Factor* AP[z]+ALPHA[0]*R_PRES[1][z]; |
436 |
X_PRES[0][z]=-Factor*P_PRES[1][z]+ALPHA[0]*X_PRES[1][z]; |
437 |
} |
438 |
} else if (order==2) { |
439 |
#pragma omp for private(z) schedule(static) |
440 |
for (z=0;z<n;++z) { |
441 |
R_PRES[0][z]= Factor* AP[z]+ALPHA[0]*R_PRES[1][z] |
442 |
+ALPHA[1]*R_PRES[2][z]; |
443 |
X_PRES[0][z]=-Factor*P_PRES[1][z]+ALPHA[0]*X_PRES[1][z] |
444 |
+ALPHA[1]*X_PRES[2][z]; |
445 |
} |
446 |
} else if (order==3) { |
447 |
#pragma omp for private(z) schedule(static) |
448 |
for (z=0;z<n;++z) { |
449 |
R_PRES[0][z]= Factor*AP[z]+ALPHA[0]*R_PRES[1][z] |
450 |
+ALPHA[1]*R_PRES[2][z] |
451 |
+ALPHA[2]*R_PRES[3][z]; |
452 |
X_PRES[0][z]=-Factor*P_PRES[1][z]+ALPHA[0]*X_PRES[1][z] |
453 |
+ALPHA[1]*X_PRES[2][z] |
454 |
+ALPHA[2]*X_PRES[3][z]; |
455 |
} |
456 |
} else if (order==4) { |
457 |
#pragma omp for private(z) schedule(static) |
458 |
for (z=0;z<n;++z) { |
459 |
R_PRES[0][z]= Factor*AP[z]+ALPHA[0]*R_PRES[1][z] |
460 |
+ALPHA[1]*R_PRES[2][z] |
461 |
+ALPHA[2]*R_PRES[3][z] |
462 |
+ALPHA[3]*R_PRES[4][z]; |
463 |
X_PRES[0][z]=-Factor*P_PRES[1][z]+ALPHA[0]*X_PRES[1][z] |
464 |
+ALPHA[1]*X_PRES[2][z] |
465 |
+ALPHA[2]*X_PRES[3][z] |
466 |
+ALPHA[3]*X_PRES[4][z]; |
467 |
} |
468 |
} else if (order==5) { |
469 |
#pragma omp for private(z) schedule(static) |
470 |
for (z=0;z<n;++z) { |
471 |
R_PRES[0][z]=Factor*AP[z]+ALPHA[0]*R_PRES[1][z] |
472 |
+ALPHA[1]*R_PRES[2][z] |
473 |
+ALPHA[2]*R_PRES[3][z] |
474 |
+ALPHA[3]*R_PRES[4][z] |
475 |
+ALPHA[4]*R_PRES[5][z]; |
476 |
X_PRES[0][z]=-Factor*P_PRES[1][z]+ALPHA[0]*X_PRES[1][z] |
477 |
+ALPHA[1]*X_PRES[2][z] |
478 |
+ALPHA[2]*X_PRES[3][z] |
479 |
+ALPHA[3]*X_PRES[4][z] |
480 |
+ALPHA[4]*X_PRES[5][z]; |
481 |
} |
482 |
} else if (order==6) { |
483 |
#pragma omp for private(z) schedule(static) |
484 |
for (z=0;z<n;++z) { |
485 |
R_PRES[0][z]=Factor*AP[z]+ALPHA[0]*R_PRES[1][z] |
486 |
+ALPHA[1]*R_PRES[2][z] |
487 |
+ALPHA[2]*R_PRES[3][z] |
488 |
+ALPHA[3]*R_PRES[4][z] |
489 |
+ALPHA[4]*R_PRES[5][z] |
490 |
+ALPHA[5]*R_PRES[6][z]; |
491 |
X_PRES[0][z]=-Factor*P_PRES[1][z]+ALPHA[0]*X_PRES[1][z] |
492 |
+ALPHA[1]*X_PRES[2][z] |
493 |
+ALPHA[2]*X_PRES[3][z] |
494 |
+ALPHA[3]*X_PRES[4][z] |
495 |
+ALPHA[4]*X_PRES[5][z] |
496 |
+ALPHA[5]*X_PRES[6][z]; |
497 |
} |
498 |
} else if (order>6) { |
499 |
#pragma omp for private(z) schedule(static) |
500 |
for (z=0;z<n;++z) { |
501 |
R_PRES[0][z]=Factor*AP[z]+ALPHA[0]*R_PRES[1][z] |
502 |
+ALPHA[1]*R_PRES[2][z] |
503 |
+ALPHA[2]*R_PRES[3][z] |
504 |
+ALPHA[3]*R_PRES[4][z] |
505 |
+ALPHA[4]*R_PRES[5][z] |
506 |
+ALPHA[5]*R_PRES[6][z] |
507 |
+ALPHA[6]*R_PRES[7][z]; |
508 |
X_PRES[0][z]=-Factor*P_PRES[1][z]+ALPHA[0]*X_PRES[1][z] |
509 |
+ALPHA[1]*X_PRES[2][z] |
510 |
+ALPHA[2]*X_PRES[3][z] |
511 |
+ALPHA[3]*X_PRES[4][z] |
512 |
+ALPHA[4]*X_PRES[5][z] |
513 |
+ALPHA[5]*X_PRES[6][z] |
514 |
+ALPHA[6]*X_PRES[7][z]; |
515 |
} |
516 |
for (i=7;i<order;++i) { |
517 |
#pragma omp for private(z) schedule(static) |
518 |
for (z=0;z<n;++z) { |
519 |
R_PRES[0][z]+=ALPHA[i]*R_PRES[i+1][z]; |
520 |
X_PRES[0][z]+=ALPHA[i]*X_PRES[i+1][z]; |
521 |
} |
522 |
} |
523 |
} |
524 |
if (breakf0>0.) { |
525 |
/*** |
526 |
***** calculate gamma from min_(gamma){|R+gamma*(R_PRES-R)|_2}: |
527 |
***/ |
528 |
#pragma omp master |
529 |
{ |
530 |
SC1=ZERO; |
531 |
SC2=ZERO; |
532 |
L2_R=ZERO; |
533 |
} |
534 |
#pragma omp barrier |
535 |
#pragma omp for private(z,diff) reduction(+:SC1,SC2) schedule(static) |
536 |
for (z=0;z<n;++z) { |
537 |
diff=R_PRES[0][z]-r[z]; |
538 |
SC1+=diff*diff; |
539 |
SC2+=diff*r[z]; |
540 |
} |
541 |
gamma=(SC1<=ZERO) ? ZERO : -SC2/SC1; |
542 |
#pragma omp for private(z) reduction(+:L2_R) schedule(static) |
543 |
for (z=0;z<n;++z) { |
544 |
x[z]+=gamma*(X_PRES[0][z]-x[z]); |
545 |
r[z]+=gamma*(R_PRES[0][z]-r[z]); |
546 |
L2_R+=r[z]*r[z]; |
547 |
} |
548 |
norm_of_residual=sqrt(L2_R); |
549 |
convergeFlag = (norm_of_residual <= tol); |
550 |
if (restart>0) restartFlag=(num_iter_restart >= restart); |
551 |
} else { |
552 |
convergeFlag=FALSE; |
553 |
restartFlag=FALSE; |
554 |
} |
555 |
maxIterFlag = (num_iter >= maxit); |
556 |
} |
557 |
} |
558 |
/* end of iteration */ |
559 |
#pragma omp master |
560 |
{ |
561 |
Norm_of_residual_global=norm_of_residual; |
562 |
Num_iter_global=num_iter; |
563 |
if (maxIterFlag) { |
564 |
Status = SOLVER_MAXITER_REACHED; |
565 |
} else if (breakFlag) { |
566 |
Status = SOLVER_BREAKDOWN; |
567 |
} |
568 |
} |
569 |
} /* end of parallel region */ |
570 |
TMPMEMFREE(AP); |
571 |
for (i=0;i<Length_of_recursion;i++) { |
572 |
TMPMEMFREE(X_PRES[i]); |
573 |
TMPMEMFREE(R_PRES[i]); |
574 |
TMPMEMFREE(P_PRES[i]); |
575 |
} |
576 |
*iter=Num_iter_global; |
577 |
*tolerance=Norm_of_residual_global; |
578 |
} |
579 |
return Status; |
580 |
} |