1 |
# -*- coding: utf-8 -*- |
2 |
|
3 |
######################################################## |
4 |
# |
5 |
# Copyright (c) 2003-2012 by University of Queensland |
6 |
# Earth Systems Science Computational Center (ESSCC) |
7 |
# http://www.uq.edu.au/esscc |
8 |
# |
9 |
# Primary Business: Queensland, Australia |
10 |
# Licensed under the Open Software License version 3.0 |
11 |
# http://www.opensource.org/licenses/osl-3.0.php |
12 |
# |
13 |
######################################################## |
14 |
|
15 |
__copyright__="""Copyright (c) 2003-2012 by University of Queensland |
16 |
Earth Systems Science Computational Center (ESSCC) |
17 |
http://www.uq.edu.au/esscc |
18 |
Primary Business: Queensland, Australia""" |
19 |
__license__="""Licensed under the Open Software License version 3.0 |
20 |
http://www.opensource.org/licenses/osl-3.0.php""" |
21 |
__url__="https://launchpad.net/escript-finley" |
22 |
|
23 |
""" |
24 |
mesh generation using gmsh |
25 |
|
26 |
:var __author__: name of author |
27 |
:var __copyright__: copyrights |
28 |
:var __license__: licence agreement |
29 |
:var __url__: url entry point on documentation |
30 |
:var __version__: version |
31 |
:var __date__: date of the version |
32 |
""" |
33 |
|
34 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
35 |
|
36 |
from . import design |
37 |
import tempfile |
38 |
import os |
39 |
from .primitives import Point, Spline, BezierCurve, BSpline, Line, Arc, CurveLoop, RuledSurface, PlaneSurface, SurfaceLoop, Volume, PropertySet, Ellipse |
40 |
from esys.escript import getMPIWorldMax, getMPIRankWorld |
41 |
from .transformations import DEG |
42 |
|
43 |
class Design(design.Design): |
44 |
""" |
45 |
Design for gmsh. |
46 |
|
47 |
""" |
48 |
DELAUNAY="Delauny" |
49 |
MESHADAPT="MeshAdapt" |
50 |
FRONTAL="Frontal" |
51 |
NETGEN="Frontal" |
52 |
TETGEN="Delauny" |
53 |
|
54 |
|
55 |
def __init__(self,dim=3,element_size=1.,order=1,keep_files=False): |
56 |
""" |
57 |
Initializes the gmsh design. |
58 |
|
59 |
:param dim: spatial dimension |
60 |
:param element_size: global element size |
61 |
:param order: element order |
62 |
:param keep_files: flag to keep work files |
63 |
""" |
64 |
design.Design.__init__(self,dim=dim,element_size=element_size,order=order,keep_files=keep_files) |
65 |
self.__scriptname="" |
66 |
self.setScriptFileName() |
67 |
self.setOptions() |
68 |
self.setFileFormat(self.GMSH) |
69 |
|
70 |
def setScriptFileName(self,name=None): |
71 |
""" |
72 |
Sets the filename for the gmsh input script. If no name is given a name |
73 |
with extension I{geo} is generated. |
74 |
""" |
75 |
if self.__scriptname: |
76 |
os.unlink(self.__scriptname) |
77 |
if name == None: |
78 |
self.__scriptname_set=False |
79 |
tmp_f_id=tempfile.mkstemp(suffix=".geo") |
80 |
self.__scriptname=tmp_f_id[1] |
81 |
os.close(tmp_f_id[0]) |
82 |
else: |
83 |
self.__scriptname=name |
84 |
self.__scriptname_set=True |
85 |
|
86 |
def getScriptFileName(self): |
87 |
""" |
88 |
Returns the name of the gmsh script file. |
89 |
""" |
90 |
return self.__scriptname |
91 |
|
92 |
def setOptions(self,algorithm=None, optimize_quality=True, smoothing=1, curvature_based_element_size=False, algorithm2D=None, algorithm3D=None, generate_hexahedra=False): |
93 |
""" |
94 |
Sets options for the mesh generator. |
95 |
|
96 |
:param algorithm2D: selects 2D meshing algorithm |
97 |
:type algorithm2D: in self.DELAUNAY, self.MESHADAPT, self.FRONTAL |
98 |
:param algorithm3D: selects 3D meshing algorithm |
99 |
:type algorithm3D: in self.DELAUNAY, self.FRONTAL |
100 |
:param curvature_based_element_size: switch for curvature based element size adaption |
101 |
:type curvature_based_element_size: ```bool``` |
102 |
:param smoothing: number of smoothing steps |
103 |
:type smoothing: non-negative ```int``` |
104 |
:param optimize_quality: switch for mesh quality optimization |
105 |
:type optimize_quality: ```bool``` |
106 |
:param generate_hexahedra: switch for using quadrangles/hexahedra elements everywhere. |
107 |
:type generate_hexahedra: ```bool``` |
108 |
""" |
109 |
if algorithm3D==None: algorithm3D=self.FRONTAL |
110 |
if algorithm==None: |
111 |
if algorithm2D==None: algorithm2D=self.MESHADAPT |
112 |
else: |
113 |
if not algorithm2D==None: |
114 |
if not algorithm == algorithm2D : |
115 |
raise ValueError("argument algorithm (=%s) and algorithm2D (=%s) must have the same value if set."%(algorithm, algorithm2D)) |
116 |
algorithm2D = algorithm |
117 |
if not algorithm2D in [ self.DELAUNAY, self.MESHADAPT, self.FRONTAL ]: |
118 |
raise ValueError("illegal 2D meshing algorithm %s."%algorithm2D) |
119 |
if not algorithm3D in [ self.DELAUNAY, self.FRONTAL ]: |
120 |
raise ValueError("illegal 3D meshing algorithm %s."%algorithm3D) |
121 |
|
122 |
self.__curvature_based_element_size=curvature_based_element_size |
123 |
self.__algo2D=algorithm2D |
124 |
self.__algo3D=algorithm3D |
125 |
self.__optimize_quality=optimize_quality |
126 |
self.__smoothing=smoothing |
127 |
self.__generate_hexahedra=generate_hexahedra |
128 |
def getOptions(self,name=None): |
129 |
""" |
130 |
Returns the current options for the mesh generator. |
131 |
""" |
132 |
if name == None: |
133 |
return {"optimize_quality" : self.__optimize_quality , |
134 |
"smoothing" : self.__smoothing, |
135 |
"curvature_based_element_size" : self.__curvature_based_element_size, |
136 |
"generate_hexahedra" : self.__generate_hexahedra, |
137 |
"algorithm2D" : self.__algo2D, |
138 |
"algorithm3D" : self.__algo3D } |
139 |
else: |
140 |
return self.getOption()[name] |
141 |
|
142 |
def __del__(self): |
143 |
""" |
144 |
Cleans up. |
145 |
""" |
146 |
if not self.keepFiles(): |
147 |
if not self.__scriptname_set: |
148 |
os.unlink(self.getScriptFileName()) |
149 |
if not self.__mshname_set: |
150 |
os.unlink(self.getMeshFileName()) |
151 |
|
152 |
def getCommandString(self): |
153 |
""" |
154 |
Returns the gmsh command line. |
155 |
""" |
156 |
exe="gmsh -format %s -%s -order %s -v 3 -o '%s' '%%s'" % ( |
157 |
self.getFileFormat(), self.getDim(), self.getElementOrder(), self.getMeshFileName()) |
158 |
|
159 |
return exe |
160 |
|
161 |
def getScriptHandler(self): |
162 |
""" |
163 |
Returns a handler to the script file to generate the geometry. |
164 |
In the current implementation a script file name is returned. |
165 |
""" |
166 |
if getMPIRankWorld() == 0: |
167 |
open(self.getScriptFileName(),"w").write(self.getScriptString()) |
168 |
return self.getScriptFileName() |
169 |
|
170 |
def getMeshHandler(self): |
171 |
""" |
172 |
Returns a handle to a mesh meshing the design. In the current |
173 |
implementation a mesh file name in gmsh format is returned. |
174 |
""" |
175 |
from .gmshrunner import runGmsh |
176 |
import shlex |
177 |
args=shlex.split(self.getCommandString()) |
178 |
args[-1]=args[-1]%self.getScriptHandler() |
179 |
ret=runGmsh(args) |
180 |
if ret > 0: |
181 |
raise RuntimeError("Could not build mesh using: %s"%" ".join(args)) |
182 |
return self.getMeshFileName() |
183 |
|
184 |
|
185 |
def getScriptString(self): |
186 |
""" |
187 |
Returns the gmsh script to generate the mesh. |
188 |
""" |
189 |
h=self.getElementSize() |
190 |
out='// generated by esys.pycad\nGeneral.Terminal = 1;\nGeneral.ExpertMode = 1;\n' |
191 |
options=self.getOptions() |
192 |
if options["optimize_quality"]: |
193 |
out+="Mesh.Optimize = 1;\n" |
194 |
else: |
195 |
out+="Mesh.Optimize = 0;\n" |
196 |
if options["curvature_based_element_size"]: |
197 |
out+="Mesh.CharacteristicLengthFromCurvature = 1;\n" |
198 |
else: |
199 |
out+="Mesh.CharacteristicLengthFromCurvature = 0;\n" |
200 |
if options["generate_hexahedra"]: |
201 |
if self.getDim() == 2: |
202 |
out+="Mesh.SubdivisionAlgorithm = 1;\n" |
203 |
else: |
204 |
out+="Mesh.SubdivisionAlgorithm = 2;\n" |
205 |
else: |
206 |
out+="Mesh.SubdivisionAlgorithm = 0;\n" |
207 |
out+="Mesh.Smoothing = %d;\n"%options["smoothing"] |
208 |
if options["algorithm2D"] == self.MESHADAPT: out+="Mesh.Algorithm = 1; // = MeshAdapt\n" |
209 |
if options["algorithm2D"] == self.DELAUNAY : out+="Mesh.Algorithm = 5; // = Delaunay\n" |
210 |
if options["algorithm2D"] == self.FRONTAL: out+="Mesh.Algorithm = 6; // = Frontal\n" |
211 |
if options["algorithm3D"] == self.DELAUNAY : out+="Mesh.Algorithm3D = 1; // = Delaunay\n" |
212 |
if options["algorithm3D"] == self.FRONTAL: out+="Mesh.Algorithm3D = 4; // = Frontal\n" |
213 |
for prim in self.getAllPrimitives(): |
214 |
p=prim.getUnderlyingPrimitive() |
215 |
if isinstance(p, Point): |
216 |
c=p.getCoordinates() |
217 |
out+="Point(%s) = {%f , %f, %f , %f };\n"%(p.getID(),c[0],c[1],c[2], p.getLocalScale()*h) |
218 |
|
219 |
elif isinstance(p, Spline): |
220 |
out+="Spline(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getControlPoints()))+self.__mkTransfiniteLine(p) |
221 |
|
222 |
elif isinstance(p, BezierCurve): |
223 |
out+="Bezier(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getControlPoints()))+self.__mkTransfiniteLine(p) |
224 |
|
225 |
elif isinstance(p, BSpline): |
226 |
out+="BSpline(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getControlPoints()))+self.__mkTransfiniteLine(p) |
227 |
|
228 |
elif isinstance(p, Line): |
229 |
out+="Line(%s) = {%s, %s};\n"%(p.getID(),p.getStartPoint().getDirectedID(),p.getEndPoint().getDirectedID())+self.__mkTransfiniteLine(p) |
230 |
|
231 |
elif isinstance(p, Arc): |
232 |
out+="Circle(%s) = {%s, %s, %s};\n"%(p.getID(),p.getStartPoint().getDirectedID(),p.getCenterPoint().getDirectedID(),p.getEndPoint().getDirectedID())+self.__mkTransfiniteLine(p) |
233 |
|
234 |
elif isinstance(p, Ellipse): |
235 |
out+="Ellipse(%s) = {%s, %s, %s, %s};\n"%(p.getID(),p.getStartPoint().getDirectedID(),p.getCenterPoint().getDirectedID(),p.getPointOnMainAxis().getDirectedID(), p.getEndPoint().getDirectedID())+self.__mkTransfiniteLine(p) |
236 |
|
237 |
elif isinstance(p, CurveLoop): |
238 |
out+="Line Loop(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getCurves())) |
239 |
|
240 |
elif isinstance(p, RuledSurface): |
241 |
out+="Ruled Surface(%s) = {%s};\n"%(p.getID(),p.getBoundaryLoop().getDirectedID())+self.__mkTransfiniteSurface(p) |
242 |
|
243 |
elif isinstance(p, PlaneSurface): |
244 |
line=self.__mkArgs(p.getHoles()) |
245 |
if len(line)>0: |
246 |
out+="Plane Surface(%s) = {%s, %s};\n"%(p.getID(),p.getBoundaryLoop().getDirectedID(), line)+self.__mkTransfiniteSurface(p) |
247 |
else: |
248 |
out+="Plane Surface(%s) = {%s};\n"%(p.getID(),p.getBoundaryLoop().getDirectedID())+self.__mkTransfiniteSurface(p) |
249 |
|
250 |
elif isinstance(p, SurfaceLoop): |
251 |
out+="Surface Loop(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getSurfaces())) |
252 |
|
253 |
elif isinstance(p, Volume): |
254 |
line=self.__mkArgs(p.getHoles()) |
255 |
if len(line)>0: |
256 |
out+="Volume(%s) = {%s, %s};\n"%(p.getID(),p.getSurfaceLoop().getDirectedID(), line)+self.__mkTransfiniteVolume(p) |
257 |
else: |
258 |
out+="Volume(%s) = {%s};\n"%(p.getID(),p.getSurfaceLoop().getDirectedID())+self.__mkTransfiniteVolume(p) |
259 |
|
260 |
elif isinstance(p, PropertySet): |
261 |
if p.getNumItems()>0: |
262 |
dim=p.getDim() |
263 |
line="Physical " |
264 |
if dim==0: |
265 |
line+="Point" |
266 |
elif dim==1: |
267 |
line+="Line" |
268 |
elif dim==2: |
269 |
line+="Surface" |
270 |
else: |
271 |
line+="Volume" |
272 |
out+=line+"(" + str(p.getID()) + ") = {"+self.__mkArgs(p.getItems(),useAbs=True)+"};\n" |
273 |
|
274 |
else: |
275 |
raise TypeError("unable to pass %s object to gmsh."%str(type(p))) |
276 |
return out |
277 |
|
278 |
|
279 |
def __mkArgs(self,args, useAbs=False): |
280 |
line="" |
281 |
for i in args: |
282 |
id = i.getDirectedID() |
283 |
if useAbs: id=abs(id) |
284 |
if len(line)>0: |
285 |
line+=", %s"%id |
286 |
else: |
287 |
line="%s"%id |
288 |
return line |
289 |
|
290 |
def __mkTransfiniteLine(self,p): |
291 |
s=p.getElementDistribution() |
292 |
if not s == None: |
293 |
if s[2]: |
294 |
out="Transfinite Line{%d} = %d Using Bump %s;\n"%(p.getID(),s[0],s[1]) |
295 |
else: |
296 |
out="Transfinite Line{%d} = %d Using Progression %s;\n"%(p.getID(),s[0],s[1]) |
297 |
else: |
298 |
out="" |
299 |
return out |
300 |
def __mkTransfiniteSurface(self,p): |
301 |
out="" |
302 |
o=p.getRecombination() |
303 |
s=p.getTransfiniteMeshing() |
304 |
if not s == None: |
305 |
out2="" |
306 |
if not s[0] == None: |
307 |
for q in s[0]: |
308 |
if len(out2)==0: |
309 |
out2="%s"%q.getID() |
310 |
else: |
311 |
out2="%s,%s"%(out2,q.getID()) |
312 |
if s[1] == None: |
313 |
out+="Transfinite Surface{%s} = {%s};\n"%(p.getID(),out2) |
314 |
else: |
315 |
out+="Transfinite Surface{%s} = {%s} %s;\n"%(p.getID(),out2,s[1]) |
316 |
if not o == None: |
317 |
out+="Recombine Surface {%s} = %f;\n"%(p.getID(),o/DEG) |
318 |
return out |
319 |
def __mkTransfiniteVolume(self,p): |
320 |
out="" |
321 |
s=p.getTransfiniteMeshing() |
322 |
if not s == None: |
323 |
if len(s)>0: |
324 |
out2="" |
325 |
for q in s[0]: |
326 |
if len(out2)==0: |
327 |
out2="%s"%q.getID() |
328 |
else: |
329 |
out2="%s,%s"%(out2,q.getID()) |
330 |
out+="Transfinite Volume{%s} = {%s};\n"%(p.getID(),out2) |
331 |
else: |
332 |
out+="Transfinite Volume{%s};\n"%(p.getID(),) |
333 |
return out |
334 |
|