1 |
# -*- coding: utf-8 -*- |
2 |
|
3 |
############################################################################## |
4 |
# |
5 |
# Copyright (c) 2003-2020 by The University of Queensland |
6 |
# http://www.uq.edu.au |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Apache License, version 2.0 |
10 |
# http://www.apache.org/licenses/LICENSE-2.0 |
11 |
# |
12 |
# Development until 2012 by Earth Systems Science Computational Center (ESSCC) |
13 |
# Development 2012-2013 by School of Earth Sciences |
14 |
# Development from 2014 by Centre for Geoscience Computing (GeoComp) |
15 |
# Development from 2019 by School of Earth and Environmental Sciences |
16 |
# |
17 |
############################################################################## |
18 |
|
19 |
from __future__ import print_function, division |
20 |
|
21 |
__copyright__="""Copyright (c) 2003-2020 by The University of Queensland |
22 |
http://www.uq.edu.au |
23 |
Primary Business: Queensland, Australia""" |
24 |
__license__="""Licensed under the Apache License, version 2.0 |
25 |
http://www.apache.org/licenses/LICENSE-2.0""" |
26 |
__url__="https://launchpad.net/escript-finley" |
27 |
|
28 |
""" |
29 |
mesh generation using gmsh |
30 |
|
31 |
:var __author__: name of author |
32 |
:var __copyright__: copyrights |
33 |
:var __license__: licence agreement |
34 |
:var __url__: url entry point on documentation |
35 |
:var __version__: version |
36 |
:var __date__: date of the version |
37 |
""" |
38 |
|
39 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
40 |
|
41 |
from . import design |
42 |
import tempfile |
43 |
import os |
44 |
from .primitives import Point, Spline, BezierCurve, BSpline, Line, Arc, CurveLoop, RuledSurface, PlaneSurface, SurfaceLoop, Volume, PropertySet, Ellipse |
45 |
from esys.escript import getMPIWorldMax, getMPIRankWorld, gmshGeo2Msh |
46 |
from .transformations import DEG |
47 |
|
48 |
class Design(design.AbstractDesign): |
49 |
""" |
50 |
Design for gmsh. |
51 |
""" |
52 |
DELAUNAY="Delauny" |
53 |
MESHADAPT="MeshAdapt" |
54 |
FRONTAL="Frontal" |
55 |
NETGEN="Frontal" |
56 |
TETGEN="Delauny" |
57 |
|
58 |
def __init__(self, dim=3, element_size=1., order=1, keep_files=False): |
59 |
""" |
60 |
Initializes the gmsh design. |
61 |
|
62 |
:param dim: spatial dimension |
63 |
:param element_size: global element size |
64 |
:param order: element order |
65 |
:param keep_files: flag to keep work files |
66 |
""" |
67 |
design.AbstractDesign.__init__(self,dim=dim,element_size=element_size,order=order,keep_files=keep_files) |
68 |
self.__mshname_set = False |
69 |
self.__scriptname="" |
70 |
self.setScriptFileName() |
71 |
self.setOptions() |
72 |
self.setFileFormat(self.GMSH) |
73 |
|
74 |
def setScriptFileName(self, name=None): |
75 |
""" |
76 |
Sets the filename for the gmsh input script. If no name is given a name |
77 |
with extension `geo` is generated. |
78 |
""" |
79 |
if self.__scriptname: |
80 |
os.unlink(self.__scriptname) |
81 |
if name == None: |
82 |
self.__scriptname_set=False |
83 |
tmp_f_id=tempfile.mkstemp(suffix=".geo") |
84 |
self.__scriptname=tmp_f_id[1] |
85 |
os.close(tmp_f_id[0]) |
86 |
else: |
87 |
self.__scriptname=name |
88 |
self.__scriptname_set=True |
89 |
|
90 |
def getScriptFileName(self): |
91 |
""" |
92 |
Returns the name of the gmsh script file. |
93 |
""" |
94 |
return self.__scriptname |
95 |
|
96 |
def setOptions(self, algorithm=None, optimize_quality=True, smoothing=1, |
97 |
curvature_based_element_size=False, algorithm2D=None, |
98 |
algorithm3D=None, generate_hexahedra=False, |
99 |
random_factor=None): |
100 |
""" |
101 |
Sets options for the mesh generator. |
102 |
|
103 |
:param algorithm: selects 2D meshing algorithm |
104 |
:type algorithm: in self.DELAUNAY, self.MESHADAPT, self.FRONTAL |
105 |
:param algorithm2D: must be equal to algorithm |
106 |
:type algorithm2D: in self.DELAUNAY, self.MESHADAPT, self.FRONTAL |
107 |
:param algorithm3D: selects 3D meshing algorithm |
108 |
:type algorithm3D: in self.DELAUNAY, self.FRONTAL |
109 |
:param curvature_based_element_size: switch for curvature based element size adaption |
110 |
:type curvature_based_element_size: ```bool``` |
111 |
:param smoothing: number of smoothing steps |
112 |
:type smoothing: non-negative ```int``` |
113 |
:param optimize_quality: switch for mesh quality optimization |
114 |
:type optimize_quality: ```bool``` |
115 |
:param generate_hexahedra: switch for using quadrangles/hexahedra elements everywhere. |
116 |
:type generate_hexahedra: ```bool``` |
117 |
:param random_factor: used in the 2D meshing algorithm (should be increased if RandomFactor * size(triangle)/size(model) approaches machine accuracy) |
118 |
:type random_factor: positive ```float``` |
119 |
""" |
120 |
if random_factor==None: random_factor=1.e-9 |
121 |
if not random_factor > 0: |
122 |
raise ValueError("random_factor must be positive.") |
123 |
smoothing=int(smoothing) |
124 |
if not smoothing > 0: |
125 |
raise ValueError("smoothing must be positive.") |
126 |
|
127 |
if algorithm3D is None: |
128 |
algorithm3D=self.FRONTAL |
129 |
if algorithm is None: |
130 |
if algorithm2D is None: |
131 |
algorithm2D=self.MESHADAPT |
132 |
else: |
133 |
if not algorithm2D is None: |
134 |
if not algorithm == algorithm2D: |
135 |
raise ValueError("argument algorithm (=%s) and algorithm2D (=%s) must have the same value if set."%(algorithm, algorithm2D)) |
136 |
algorithm2D = algorithm |
137 |
if not algorithm2D in [ self.DELAUNAY, self.MESHADAPT, self.FRONTAL ]: |
138 |
raise ValueError("illegal 2D meshing algorithm %s."%algorithm2D) |
139 |
if not algorithm3D in [ self.DELAUNAY, self.FRONTAL ]: |
140 |
raise ValueError("illegal 3D meshing algorithm %s."%algorithm3D) |
141 |
|
142 |
self.__curvature_based_element_size=curvature_based_element_size |
143 |
self.__algo2D=algorithm2D |
144 |
self.__algo3D=algorithm3D |
145 |
self.__optimize_quality=optimize_quality |
146 |
self.__smoothing=smoothing |
147 |
self.__generate_hexahedra=generate_hexahedra |
148 |
self.__random_factor=random_factor |
149 |
|
150 |
def getOptions(self, name=None): |
151 |
""" |
152 |
Returns the current options for the mesh generator. |
153 |
""" |
154 |
if name is None: |
155 |
return {"optimize_quality" : self.__optimize_quality , |
156 |
"smoothing" : self.__smoothing, |
157 |
"curvature_based_element_size" : self.__curvature_based_element_size, |
158 |
"generate_hexahedra" : self.__generate_hexahedra, |
159 |
"algorithm2D" : self.__algo2D, |
160 |
"algorithm3D" : self.__algo3D , |
161 |
"random_factor" : self.__random_factor } |
162 |
else: |
163 |
return self.getOption()[name] |
164 |
|
165 |
def __del__(self): |
166 |
""" |
167 |
Cleans up. |
168 |
""" |
169 |
try: |
170 |
if not self.keepFiles(): |
171 |
if not self.__scriptname_set: #i.e. it's a tempfile |
172 |
os.unlink(self.getScriptFileName()) |
173 |
if not self.__mshname_set: #i.e. it's a tempfile |
174 |
os.unlink(self.getMeshFileName()) |
175 |
except OSError: |
176 |
pass # The file might not have been created and there is nothing |
177 |
# to do about a "failure" here anyway |
178 |
|
179 |
def getScriptHandler(self): |
180 |
""" |
181 |
Returns a handler to the script file to generate the geometry. |
182 |
In the current implementation a script file name is returned. |
183 |
""" |
184 |
if getMPIRankWorld() == 0: |
185 |
open(self.getScriptFileName(),"w").write(self.getScriptString()) |
186 |
return self.getScriptFileName() |
187 |
|
188 |
def getMeshHandler(self): |
189 |
""" |
190 |
Returns a handle to a mesh meshing the design. In the current |
191 |
implementation a mesh file name in gmsh format is returned. |
192 |
""" |
193 |
|
194 |
verbosity = 3 |
195 |
ret = gmshGeo2Msh(self.getScriptHandler(), self.getMeshFileName(), |
196 |
self.getDim(), self.getElementOrder(), verbosity) |
197 |
if ret > 0: |
198 |
self.setKeepFilesOn() #no files to delete, so don't try to |
199 |
raise RuntimeError("Could not build mesh using gmsh.\n" + \ |
200 |
"Is gmsh available?") |
201 |
return self.getMeshFileName() |
202 |
|
203 |
def getScriptString(self): |
204 |
""" |
205 |
Returns the gmsh script to generate the mesh. |
206 |
""" |
207 |
h=self.getElementSize() |
208 |
out='// generated by esys.pycad\nGeneral.Terminal = 1;\nGeneral.ExpertMode = 1;\n' |
209 |
options=self.getOptions() |
210 |
if options["optimize_quality"]: |
211 |
out += "Mesh.Optimize = 1;\n" |
212 |
else: |
213 |
out += "Mesh.Optimize = 0;\n" |
214 |
|
215 |
if options["curvature_based_element_size"]: |
216 |
out += "Mesh.CharacteristicLengthFromCurvature = 1;\n" |
217 |
else: |
218 |
out += "Mesh.CharacteristicLengthFromCurvature = 0;\n" |
219 |
|
220 |
if options["generate_hexahedra"]: |
221 |
if self.getDim() == 2: |
222 |
out += "Mesh.SubdivisionAlgorithm = 1;\n" |
223 |
else: |
224 |
out += "Mesh.SubdivisionAlgorithm = 2;\n" |
225 |
else: |
226 |
out += "Mesh.SubdivisionAlgorithm = 0;\n" |
227 |
|
228 |
out += "Mesh.Smoothing = %d;\n"%options["smoothing"] |
229 |
out += "Mesh.RandomFactor = %.14e;\n"%options["random_factor"] |
230 |
if options["algorithm2D"] == self.MESHADAPT: |
231 |
out += "Mesh.Algorithm = 1; // = MeshAdapt\n" |
232 |
elif options["algorithm2D"] == self.DELAUNAY: |
233 |
out += "Mesh.Algorithm = 5; // = Delaunay\n" |
234 |
elif options["algorithm2D"] == self.FRONTAL: |
235 |
out += "Mesh.Algorithm = 6; // = Frontal\n" |
236 |
|
237 |
if options["algorithm3D"] == self.DELAUNAY: |
238 |
out += "Mesh.Algorithm3D = 1; // = Delaunay\n" |
239 |
elif options["algorithm3D"] == self.FRONTAL: |
240 |
out += "Mesh.Algorithm3D = 4; // = Frontal\n" |
241 |
|
242 |
for prim in self.getAllPrimitives(): |
243 |
p=prim.getUnderlyingPrimitive() |
244 |
if isinstance(p, Point): |
245 |
c=p.getCoordinates() |
246 |
#out+="Point(%s) = {%f , %f, %f , %f };\n"%(p.getID(),c[0],c[1],c[2], p.getLocalScale()*h) |
247 |
out += "Point(%s) = {%.14e, %.14e, %.14e, %.14e};\n"%(p.getID(),c[0],c[1],c[2], p.getLocalScale()*h) |
248 |
|
249 |
elif isinstance(p, Spline): |
250 |
out += "Spline(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getControlPoints()))+self.__mkTransfiniteLine(p) |
251 |
|
252 |
elif isinstance(p, BezierCurve): |
253 |
out += "Bezier(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getControlPoints()))+self.__mkTransfiniteLine(p) |
254 |
|
255 |
elif isinstance(p, BSpline): |
256 |
out += "BSpline(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getControlPoints()))+self.__mkTransfiniteLine(p) |
257 |
|
258 |
elif isinstance(p, Line): |
259 |
out += "Line(%s) = {%s, %s};\n"%(p.getID(),p.getStartPoint().getDirectedID(),p.getEndPoint().getDirectedID())+self.__mkTransfiniteLine(p) |
260 |
|
261 |
elif isinstance(p, Arc): |
262 |
out += "Circle(%s) = {%s, %s, %s};\n"%(p.getID(),p.getStartPoint().getDirectedID(),p.getCenterPoint().getDirectedID(),p.getEndPoint().getDirectedID())+self.__mkTransfiniteLine(p) |
263 |
|
264 |
elif isinstance(p, Ellipse): |
265 |
out += "Ellipse(%s) = {%s, %s, %s, %s};\n"%(p.getID(),p.getStartPoint().getDirectedID(),p.getCenterPoint().getDirectedID(),p.getPointOnMainAxis().getDirectedID(), p.getEndPoint().getDirectedID())+self.__mkTransfiniteLine(p) |
266 |
|
267 |
elif isinstance(p, CurveLoop): |
268 |
out += "Line Loop(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getCurves())) |
269 |
|
270 |
elif isinstance(p, RuledSurface): |
271 |
out += "Ruled Surface(%s) = {%s};\n"%(p.getID(),p.getBoundaryLoop().getDirectedID())+self.__mkTransfiniteSurface(p) |
272 |
|
273 |
elif isinstance(p, PlaneSurface): |
274 |
line = self.__mkArgs(p.getHoles()) |
275 |
if len(line) > 0: |
276 |
out += "Plane Surface(%s) = {%s, %s};\n"%(p.getID(),p.getBoundaryLoop().getDirectedID(), line)+self.__mkTransfiniteSurface(p) |
277 |
else: |
278 |
out += "Plane Surface(%s) = {%s};\n"%(p.getID(),p.getBoundaryLoop().getDirectedID())+self.__mkTransfiniteSurface(p) |
279 |
|
280 |
elif isinstance(p, SurfaceLoop): |
281 |
out += "Surface Loop(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getSurfaces())) |
282 |
|
283 |
elif isinstance(p, Volume): |
284 |
line = self.__mkArgs(p.getHoles()) |
285 |
if len(line)>0: |
286 |
out += "Volume(%s) = {%s, %s};\n"%(p.getID(),p.getSurfaceLoop().getDirectedID(), line)+self.__mkTransfiniteVolume(p) |
287 |
else: |
288 |
out += "Volume(%s) = {%s};\n"%(p.getID(),p.getSurfaceLoop().getDirectedID())+self.__mkTransfiniteVolume(p) |
289 |
|
290 |
elif isinstance(p, PropertySet): |
291 |
if p.getNumItems() > 0: |
292 |
dim=p.getDim() |
293 |
line = "Physical " |
294 |
if dim==0: |
295 |
line += "Point" |
296 |
elif dim==1: |
297 |
line += "Line" |
298 |
elif dim==2: |
299 |
line += "Surface" |
300 |
else: |
301 |
line += "Volume" |
302 |
out += line+"(" + str(p.getID()) + ") = {"+self.__mkArgs(p.getItems(),useAbs=True)+"};\n" |
303 |
|
304 |
else: |
305 |
raise TypeError("unable to pass %s object to gmsh."%str(type(p))) |
306 |
return out |
307 |
|
308 |
def __mkArgs(self, args, useAbs=False): |
309 |
line = "" |
310 |
for i in args: |
311 |
id = i.getDirectedID() |
312 |
if useAbs: id=abs(id) |
313 |
if len(line) > 0: |
314 |
line += ", %s"%id |
315 |
else: |
316 |
line = "%s"%id |
317 |
return line |
318 |
|
319 |
def __mkTransfiniteLine(self, p): |
320 |
s = p.getElementDistribution() |
321 |
if not s == None: |
322 |
if s[2]: |
323 |
out="Transfinite Line{%d} = %d Using Bump %s;\n"%(p.getID(),s[0],s[1]) |
324 |
else: |
325 |
out="Transfinite Line{%d} = %d Using Progression %s;\n"%(p.getID(),s[0],s[1]) |
326 |
else: |
327 |
out="" |
328 |
return out |
329 |
|
330 |
def __mkTransfiniteSurface(self, p): |
331 |
out = "" |
332 |
o = p.getRecombination() |
333 |
s = p.getTransfiniteMeshing() |
334 |
if not s == None: |
335 |
out2 = "" |
336 |
if not s[0] is None: |
337 |
for q in s[0]: |
338 |
if len(out2)==0: |
339 |
out2 = "%s"%q.getID() |
340 |
else: |
341 |
out2 = "%s,%s"%(out2, q.getID()) |
342 |
if s[1] is None: |
343 |
out += "Transfinite Surface{%s} = {%s};\n"%(p.getID(),out2) |
344 |
else: |
345 |
out += "Transfinite Surface{%s} = {%s} %s;\n"%(p.getID(),out2,s[1]) |
346 |
if not o is None: |
347 |
out += "Recombine Surface {%s} = %f;\n"%(p.getID(), o/DEG) |
348 |
return out |
349 |
|
350 |
def __mkTransfiniteVolume(self, p): |
351 |
out="" |
352 |
s=p.getTransfiniteMeshing() |
353 |
if not s == None: |
354 |
if len(s)>0: |
355 |
out2="" |
356 |
for q in s[0]: |
357 |
if len(out2)==0: |
358 |
out2="%s"%q.getID() |
359 |
else: |
360 |
out2="%s,%s"%(out2,q.getID()) |
361 |
out+="Transfinite Volume{%s} = {%s};\n"%(p.getID(),out2) |
362 |
else: |
363 |
out+="Transfinite Volume{%s};\n"%(p.getID(),) |
364 |
return out |
365 |
|