1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2009 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2009 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="https://launchpad.net/escript-finley" |
21 |
|
22 |
""" |
23 |
Geometrical Primitives |
24 |
|
25 |
the concept is inspired by gmsh and very much focused on the fact that |
26 |
the classes are used to wrk with gmsh. |
27 |
|
28 |
:var __author__: name of author |
29 |
:var __copyright__: copyrights |
30 |
:var __license__: licence agreement |
31 |
:var __url__: url entry point on documentation |
32 |
:var __version__: version |
33 |
:var __date__: date of the version |
34 |
""" |
35 |
|
36 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
37 |
|
38 |
try: |
39 |
import numpy |
40 |
numpyImported=True |
41 |
except: |
42 |
numpyImported=False |
43 |
|
44 |
import numpy |
45 |
from transformations import _TYPE, Translation, Dilation, Transformation, DEG |
46 |
import math |
47 |
|
48 |
|
49 |
def resetGlobalPrimitiveIdCounter(): |
50 |
""" |
51 |
Initializes the global primitive ID counter. |
52 |
""" |
53 |
global global_primitive_id_counter |
54 |
global_primitive_id_counter=1 |
55 |
|
56 |
def setToleranceForColocation(tol=1.e-11): |
57 |
""" |
58 |
Sets the global tolerance for colocation checks to ``tol``. |
59 |
""" |
60 |
global global_tolerance_for_colocation |
61 |
global_tolerance_for_colocation=tol |
62 |
|
63 |
def getToleranceForColocation(): |
64 |
""" |
65 |
Returns the global tolerance for colocation checks. |
66 |
""" |
67 |
return global_tolerance_for_colocation |
68 |
|
69 |
resetGlobalPrimitiveIdCounter() |
70 |
setToleranceForColocation() |
71 |
|
72 |
|
73 |
class PrimitiveBase(object): |
74 |
""" |
75 |
Template for a set of primitives. |
76 |
""" |
77 |
def __init__(self): |
78 |
""" |
79 |
Initializes the PrimitiveBase instance object. |
80 |
""" |
81 |
pass |
82 |
|
83 |
def __cmp__(self,other): |
84 |
""" |
85 |
Compares object with other by comparing the absolute value of the ID. |
86 |
""" |
87 |
if isinstance(other, PrimitiveBase): |
88 |
return cmp(self.getID(),other.getID()) |
89 |
else: |
90 |
return -1 |
91 |
|
92 |
def getConstructionPoints(self): |
93 |
""" |
94 |
Returns the points used to construct the primitive. |
95 |
""" |
96 |
out=[] |
97 |
for i in self.getPrimitives(): |
98 |
if isinstance(i,Point): out.append(i) |
99 |
return out |
100 |
|
101 |
def getPrimitives(self): |
102 |
""" |
103 |
Returns a list of primitives used to construct the primitive with no |
104 |
double entries. |
105 |
""" |
106 |
out=[] |
107 |
for p in self.collectPrimitiveBases(): |
108 |
if not p in out: out.append(p) |
109 |
return out |
110 |
|
111 |
def copy(self): |
112 |
""" |
113 |
Returns a deep copy of the object. |
114 |
""" |
115 |
return self.substitute({}) |
116 |
|
117 |
def modifyBy(self,transformation): |
118 |
""" |
119 |
Modifies the coordinates by applying a transformation. |
120 |
""" |
121 |
for p in self.getConstructionPoints(): p.modifyBy(transformation) |
122 |
|
123 |
def __add__(self,other): |
124 |
""" |
125 |
Returns a new object shifted by ``other``. |
126 |
""" |
127 |
return self.apply(Translation(numpy.array(other,_TYPE))) |
128 |
|
129 |
def __sub__(self,other): |
130 |
""" |
131 |
Returns a new object shifted by ``-other``. |
132 |
""" |
133 |
return self.apply(Translation(-numpy.array(other,_TYPE))) |
134 |
|
135 |
def __iadd__(self,other): |
136 |
""" |
137 |
Shifts the point inplace by ``other``. |
138 |
""" |
139 |
self.modifyBy(Translation(numpy.array(other,_TYPE))) |
140 |
return self |
141 |
|
142 |
def __isub__(self,other): |
143 |
""" |
144 |
Shifts the point inplace by ``-other``. |
145 |
""" |
146 |
self.modifyBy(Translation(-numpy.array(other,_TYPE))) |
147 |
return self |
148 |
|
149 |
def __imul__(self,other): |
150 |
""" |
151 |
Modifies object by applying `Transformation` ``other``. If ``other`` |
152 |
is not a `Transformation` it is first tried to be converted. |
153 |
""" |
154 |
if isinstance(other,int) or isinstance(other,float): |
155 |
trafo=Dilation(other) |
156 |
elif isinstance(other,numpy.ndarray): |
157 |
trafo=Translation(other) |
158 |
elif isinstance(other,Transformation): |
159 |
trafo=other |
160 |
else: |
161 |
raise TypeError, "cannot convert argument to a Transformation class object." |
162 |
self.modifyBy(trafo) |
163 |
return self |
164 |
|
165 |
def __rmul__(self,other): |
166 |
""" |
167 |
Applies `Transformation` ``other`` to object. If ``other`` is not a |
168 |
`Transformation` it is first tried to be converted. |
169 |
""" |
170 |
if isinstance(other,int) or isinstance(other,float): |
171 |
trafo=Dilation(other) |
172 |
elif isinstance(other,numpy.ndarray): |
173 |
trafo=Translation(other) |
174 |
elif isinstance(other,Transformation): |
175 |
trafo=other |
176 |
else: |
177 |
raise TypeError, "cannot convert argument to Transformation class object." |
178 |
return self.apply(trafo) |
179 |
|
180 |
|
181 |
def setLocalScale(self,factor=1.): |
182 |
""" |
183 |
Sets the local refinement factor. |
184 |
""" |
185 |
for p in self.getConstructionPoints(): p.setLocalScale(factor) |
186 |
|
187 |
def apply(self,transformation): |
188 |
""" |
189 |
Returns a new object by applying the transformation. |
190 |
""" |
191 |
out=self.copy() |
192 |
out.modifyBy(transformation) |
193 |
return out |
194 |
|
195 |
class Primitive(object): |
196 |
""" |
197 |
Class that represents a general primitive. |
198 |
""" |
199 |
def __init__(self): |
200 |
""" |
201 |
Initializes the Primitive instance object with a unique ID. |
202 |
""" |
203 |
global global_primitive_id_counter |
204 |
self.__ID=global_primitive_id_counter |
205 |
global_primitive_id_counter+=1 |
206 |
|
207 |
def getID(self): |
208 |
""" |
209 |
Returns the primitive ID. |
210 |
""" |
211 |
return self.__ID |
212 |
|
213 |
def getDirectedID(self): |
214 |
""" |
215 |
Returns the primitive ID where a negative sign means that reversed |
216 |
ordering is used. |
217 |
""" |
218 |
return self.getID() |
219 |
|
220 |
def __repr__(self): |
221 |
return "%s(%s)"%(self.__class__.__name__,self.getID()) |
222 |
|
223 |
def getUnderlyingPrimitive(self): |
224 |
""" |
225 |
Returns the underlying primitive. |
226 |
""" |
227 |
return self |
228 |
|
229 |
def hasSameOrientation(self,other): |
230 |
""" |
231 |
Returns True if ``other`` is the same primitive and has the same |
232 |
orientation, False otherwise. |
233 |
""" |
234 |
return self == other and isinstance(other,Primitive) |
235 |
|
236 |
def __neg__(self): |
237 |
""" |
238 |
Returns a view onto the curve with reversed ordering. |
239 |
|
240 |
:note: This method is overwritten by subclasses. |
241 |
""" |
242 |
raise NotImplementedError("__neg__ is not implemented.") |
243 |
|
244 |
def substitute(self,sub_dict): |
245 |
""" |
246 |
Returns a copy of self with substitutes for the primitives used to |
247 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
248 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
249 |
new instance with substituted arguments is returned. |
250 |
|
251 |
:note: This method is overwritten by subclasses. |
252 |
""" |
253 |
raise NotImplementedError("substitute is not implemented.") |
254 |
|
255 |
def collectPrimitiveBases(self): |
256 |
""" |
257 |
Returns a list of primitives used to construct the primitive. It may |
258 |
contain primitives twice. |
259 |
|
260 |
:note: This method is overwritten by subclasses. |
261 |
""" |
262 |
raise NotImplementedError("collectPrimitiveBases is not implemented.") |
263 |
|
264 |
def isColocated(self,primitive): |
265 |
""" |
266 |
Rreturns True if the two primitives are located at the same position. |
267 |
|
268 |
:note: This method is overwritten by subclasses. |
269 |
""" |
270 |
raise NotImplementedError("isColocated is not implemented.") |
271 |
|
272 |
|
273 |
class ReversePrimitive(object): |
274 |
""" |
275 |
A view onto a primitive creating a reverse orientation. |
276 |
""" |
277 |
def __init__(self,primitive): |
278 |
""" |
279 |
Instantiates a view onto ``primitive``. |
280 |
""" |
281 |
if not isinstance(primitive, Primitive): |
282 |
raise ValueError("argument needs to be a Primitive class object.") |
283 |
self.__primitive=primitive |
284 |
|
285 |
def getID(self): |
286 |
""" |
287 |
Returns the primitive ID. |
288 |
""" |
289 |
return self.__primitive.getID() |
290 |
|
291 |
def getUnderlyingPrimitive(self): |
292 |
""" |
293 |
Returns the underlying primitive. |
294 |
""" |
295 |
return self.__primitive |
296 |
|
297 |
def hasSameOrientation(self,other): |
298 |
""" |
299 |
Returns True if ``other`` is the same primitive and has the same |
300 |
orientation as self. |
301 |
""" |
302 |
return self == other and isinstance(other,ReversePrimitive) |
303 |
|
304 |
def __repr__(self): |
305 |
return "-%s(%s)"%(self.__primitive.__class__.__name__,self.getID()) |
306 |
|
307 |
def getDirectedID(self): |
308 |
""" |
309 |
Returns the primitive ID where a negative signs means that reversed |
310 |
ordering is used. |
311 |
""" |
312 |
return -self.__primitive.getID() |
313 |
|
314 |
def substitute(self,sub_dict): |
315 |
""" |
316 |
Returns a copy of self with substitutes for the primitives used to |
317 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
318 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
319 |
new instance with substituted arguments is returned. |
320 |
""" |
321 |
if not sub_dict.has_key(self): |
322 |
sub_dict[self]=-self.getUnderlyingPrimitive().substitute(sub_dict) |
323 |
return sub_dict[self] |
324 |
|
325 |
def __neg__(self): |
326 |
""" |
327 |
Returns a view onto the curve with reversed ordering. |
328 |
""" |
329 |
return self.__primitive |
330 |
|
331 |
def collectPrimitiveBases(self): |
332 |
""" |
333 |
Returns a list of primitives used to construct the primitive. It may |
334 |
contain primitives twice. |
335 |
""" |
336 |
return self.__primitive.collectPrimitiveBases() |
337 |
|
338 |
def isColocated(self,primitive): |
339 |
""" |
340 |
Returns True if the two primitives are located at the same position. |
341 |
|
342 |
:note: This method is overwritten by subclasses. |
343 |
""" |
344 |
return self.__primitive.isColocated(primitive) |
345 |
|
346 |
class Point(Primitive, PrimitiveBase): |
347 |
""" |
348 |
A three-dimensional point. |
349 |
""" |
350 |
def __init__(self,x=0.,y=0.,z=0.,local_scale=1.): |
351 |
""" |
352 |
Creates a point with coordinates ``x``, ``y``, ``z`` with the local |
353 |
refinement factor ``local_scale``. If ``x`` is a list or similar it needs to have |
354 |
length less or equal 3. In this case ``y`` and ``z`` are overwritten by |
355 |
``x[1]`` and ``x[2]``. |
356 |
""" |
357 |
PrimitiveBase.__init__(self) |
358 |
Primitive.__init__(self) |
359 |
try: |
360 |
l=len(x) |
361 |
if l>3: |
362 |
raise ValueError,"x has a lanegth bigger than 3." |
363 |
if l>1: |
364 |
y=x[1] |
365 |
else: |
366 |
y=0. |
367 |
if l>2: |
368 |
z=x[2] |
369 |
else: |
370 |
z=0. |
371 |
if l>0: |
372 |
x=x[0] |
373 |
else: |
374 |
x=0. |
375 |
except TypeError: |
376 |
pass |
377 |
a=numpy.array([x,y,z], _TYPE) |
378 |
self.setCoordinates(a) |
379 |
self.setLocalScale(local_scale) |
380 |
|
381 |
def setLocalScale(self,factor=1.): |
382 |
""" |
383 |
Sets the local refinement factor. |
384 |
""" |
385 |
if factor<=0.: |
386 |
raise ValueError("scaling factor must be positive.") |
387 |
self.__local_scale=factor |
388 |
|
389 |
def getLocalScale(self): |
390 |
""" |
391 |
Returns the local refinement factor. |
392 |
""" |
393 |
return self.__local_scale |
394 |
|
395 |
def getCoordinates(self): |
396 |
""" |
397 |
Returns the coodinates of the point as a ``numpy.ndarray`` object. |
398 |
""" |
399 |
return self._x |
400 |
|
401 |
def setCoordinates(self,x): |
402 |
""" |
403 |
Sets the coodinates of the point from a ``numpy.ndarray`` object ``x``. |
404 |
""" |
405 |
if not isinstance(x, numpy.ndarray): |
406 |
self._x=numpy.array(x,_TYPE) |
407 |
else: |
408 |
self._x=x |
409 |
|
410 |
def collectPrimitiveBases(self): |
411 |
""" |
412 |
Returns primitives used to construct the primitive. |
413 |
""" |
414 |
return [self] |
415 |
|
416 |
def isColocated(self,primitive): |
417 |
""" |
418 |
Returns True if the `Point` ``primitive`` is colocated (has the same |
419 |
coordinates) with self. That is, if |
420 |
*|self - primitive| <= tol * max(\|self\|,|primitive|)*. |
421 |
""" |
422 |
if isinstance(primitive,Point): |
423 |
primitive=primitive.getCoordinates() |
424 |
c=self.getCoordinates() |
425 |
d=c-primitive |
426 |
if numpyImported: |
427 |
return numpy.dot(d,d)<=getToleranceForColocation()**2*max(numpy.dot(c,c),numpy.dot(primitive,primitive)) |
428 |
else: |
429 |
return numpy.dot(d,d)<=getToleranceForColocation()**2*max(numpy.dot(c,c),numpy.dot(primitive,primitive)) |
430 |
else: |
431 |
return False |
432 |
|
433 |
def substitute(self,sub_dict): |
434 |
""" |
435 |
Returns a copy of self with substitutes for the primitives used to |
436 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
437 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
438 |
new instance with substituted arguments is returned. |
439 |
""" |
440 |
if not sub_dict.has_key(self): |
441 |
c=self.getCoordinates() |
442 |
sub_dict[self]=Point(c[0],c[1],c[2],local_scale=self.getLocalScale()) |
443 |
return sub_dict[self] |
444 |
|
445 |
def modifyBy(self,transformation): |
446 |
""" |
447 |
Modifies the coordinates by applying the given transformation. |
448 |
""" |
449 |
self.setCoordinates(transformation(self.getCoordinates())) |
450 |
|
451 |
def __neg__(self): |
452 |
""" |
453 |
Returns a view of the object with reverse orientation. As a point has |
454 |
no direction the object itself is returned. |
455 |
""" |
456 |
return self |
457 |
|
458 |
class Manifold1D(PrimitiveBase): |
459 |
""" |
460 |
General one-dimensional manifold in 1D defined by a start and end point. |
461 |
""" |
462 |
def __init__(self): |
463 |
""" |
464 |
Initializes the one-dimensional manifold. |
465 |
""" |
466 |
PrimitiveBase.__init__(self) |
467 |
self.resetElementDistribution() |
468 |
|
469 |
def getStartPoint(self): |
470 |
""" |
471 |
Returns the start point. |
472 |
""" |
473 |
raise NotImplementedError() |
474 |
|
475 |
def getEndPoint(self): |
476 |
""" |
477 |
Returns the end point. |
478 |
""" |
479 |
raise NotImplementedError() |
480 |
|
481 |
def getBoundary(self): |
482 |
""" |
483 |
Returns a list of the zero-dimensional manifolds forming the boundary |
484 |
of the curve. |
485 |
""" |
486 |
return [ self.getStartPoint(), self.getEndPoint()] |
487 |
|
488 |
def setElementDistribution(self,n,progression=1,createBump=False): |
489 |
""" |
490 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. |
491 |
The progression factor ``progression`` defines the change of element size between naighboured elements. If ``createBump`` is set |
492 |
progression is applied towards the center of the line. |
493 |
|
494 |
:param n: number of elements on the line |
495 |
:type n: ``int`` |
496 |
:param progression: a positive progression factor |
497 |
:type progression: positive ``float`` |
498 |
:param createBump: of elements on the line |
499 |
:type createBump: ``bool`` |
500 |
""" |
501 |
if n<1: |
502 |
raise ValueError,"number of elements must be positive." |
503 |
if progression<=0: |
504 |
raise ValueError,"progression factor must be positive." |
505 |
self.__apply_elements=True |
506 |
self.__n=n |
507 |
self.__progression_factor=progression |
508 |
self.__createBump=createBump |
509 |
|
510 |
def resetElementDistribution(self): |
511 |
""" |
512 |
removes the a previously set element distribution from the line. |
513 |
""" |
514 |
self.__apply_elements=False |
515 |
|
516 |
def getElementDistribution(self): |
517 |
""" |
518 |
Returns the element distribution. |
519 |
|
520 |
:return: the tuple of the number of elements, the progression factor and the bump flag. If no element distribution is set ``None`` is returned |
521 |
:rtype: ``tuple`` |
522 |
""" |
523 |
if self.__apply_elements: |
524 |
return (self.__n, self.__progression_factor, self.__createBump) |
525 |
else: |
526 |
return None |
527 |
|
528 |
class CurveBase(Manifold1D): |
529 |
""" |
530 |
Base class for curves. A Curve is defined by a set of control points. |
531 |
""" |
532 |
def __init__(self): |
533 |
""" |
534 |
Initializes the curve. |
535 |
""" |
536 |
Manifold1D.__init__(self) |
537 |
|
538 |
def __len__(self): |
539 |
""" |
540 |
Returns the number of control points. |
541 |
""" |
542 |
return len(self.getControlPoints()) |
543 |
|
544 |
def getStartPoint(self): |
545 |
""" |
546 |
Returns the start point. |
547 |
""" |
548 |
return self.getControlPoints()[0] |
549 |
|
550 |
def getEndPoint(self): |
551 |
""" |
552 |
Returns the end point. |
553 |
""" |
554 |
return self.getControlPoints()[-1] |
555 |
|
556 |
def getControlPoints(self): |
557 |
""" |
558 |
Returns a list of the points. |
559 |
""" |
560 |
raise NotImplementedError() |
561 |
|
562 |
class Curve(CurveBase, Primitive): |
563 |
""" |
564 |
A curve defined through a list of control points. |
565 |
""" |
566 |
def __init__(self,*points): |
567 |
""" |
568 |
Defines a curve from control points given by ``points``. |
569 |
""" |
570 |
if len(points)==1: |
571 |
points=points[0] |
572 |
if not hasattr(points,'__iter__'): raise ValueError("Curve needs at least two points") |
573 |
if len(points)<2: |
574 |
raise ValueError("Curve needs at least two points") |
575 |
i=0 |
576 |
for p in points: |
577 |
i+=1 |
578 |
if not isinstance(p,Point): raise TypeError("%s-th argument is not a Point object."%i) |
579 |
self.__points=points |
580 |
CurveBase.__init__(self) |
581 |
Primitive.__init__(self) |
582 |
|
583 |
def getControlPoints(self): |
584 |
""" |
585 |
Returns a list of the points. |
586 |
""" |
587 |
return self.__points |
588 |
|
589 |
def __neg__(self): |
590 |
""" |
591 |
Returns a view onto the curve with reversed ordering. |
592 |
""" |
593 |
return ReverseCurve(self) |
594 |
|
595 |
def substitute(self,sub_dict): |
596 |
""" |
597 |
Returns a copy of self with substitutes for the primitives used to |
598 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
599 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
600 |
new instance with substituted arguments is returned. |
601 |
""" |
602 |
if not sub_dict.has_key(self): |
603 |
new_p=[] |
604 |
for p in self.getControlPoints(): new_p.append(p.substitute(sub_dict)) |
605 |
sub_dict[self]=self.__class__(*tuple(new_p)) |
606 |
return sub_dict[self] |
607 |
|
608 |
def collectPrimitiveBases(self): |
609 |
""" |
610 |
Returns the primitives used to construct the curve. |
611 |
""" |
612 |
out=[self] |
613 |
for p in self.getControlPoints(): out+=p.collectPrimitiveBases() |
614 |
return out |
615 |
|
616 |
def isColocated(self,primitive): |
617 |
""" |
618 |
Returns True if curves are at the same position. |
619 |
""" |
620 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
621 |
if isinstance(primitive.getUnderlyingPrimitive(),self.__class__): |
622 |
if len(primitive) == len(self): |
623 |
cp0=self.getControlPoints() |
624 |
cp1=primitive.getControlPoints() |
625 |
match=True |
626 |
for i in range(len(cp0)): |
627 |
if not cp0[i].isColocated(cp1[i]): |
628 |
match=False |
629 |
break |
630 |
if not match: |
631 |
for i in range(len(cp0)): |
632 |
if not cp0[i].isColocated(cp1[len(cp0)-1-i]): |
633 |
return False |
634 |
return True |
635 |
return False |
636 |
|
637 |
class ReverseCurve(CurveBase, ReversePrimitive): |
638 |
""" |
639 |
A curve defined through a list of control points. |
640 |
""" |
641 |
def __init__(self,curve): |
642 |
""" |
643 |
Defines a curve from control points. |
644 |
""" |
645 |
if not isinstance(curve, Curve): |
646 |
raise TypeError("ReverseCurve needs to be an instance of Curve") |
647 |
CurveBase.__init__(self) |
648 |
ReversePrimitive.__init__(self,curve) |
649 |
|
650 |
def getControlPoints(self): |
651 |
""" |
652 |
Returns a list of the points. |
653 |
""" |
654 |
out=[p for p in self.getUnderlyingPrimitive().getControlPoints()] |
655 |
out.reverse() |
656 |
return tuple(out) |
657 |
|
658 |
class Spline(Curve): |
659 |
""" |
660 |
A spline curve defined through a list of control points. |
661 |
""" |
662 |
pass |
663 |
|
664 |
class BezierCurve(Curve): |
665 |
""" |
666 |
A Bezier curve. |
667 |
""" |
668 |
pass |
669 |
|
670 |
class BSpline(Curve): |
671 |
""" |
672 |
A BSpline curve. Control points may be repeated. |
673 |
""" |
674 |
pass |
675 |
|
676 |
class Line(Curve): |
677 |
""" |
678 |
A line is defined by two points. |
679 |
""" |
680 |
def __init__(self,*points): |
681 |
""" |
682 |
Defines a line with start and end point. |
683 |
""" |
684 |
if len(points)!=2: |
685 |
raise TypeError("Line needs two points") |
686 |
Curve.__init__(self,*points) |
687 |
|
688 |
class ArcBase(Manifold1D): |
689 |
""" |
690 |
Base class for arcs. |
691 |
""" |
692 |
def __init__(self): |
693 |
""" |
694 |
Initializes the arc. |
695 |
""" |
696 |
Manifold1D.__init__(self) |
697 |
|
698 |
def collectPrimitiveBases(self): |
699 |
""" |
700 |
Returns the primitives used to construct the Arc. |
701 |
""" |
702 |
out=[self] |
703 |
out+=self.getStartPoint().collectPrimitiveBases() |
704 |
out+=self.getEndPoint().collectPrimitiveBases() |
705 |
out+=self.getCenterPoint().collectPrimitiveBases() |
706 |
return out |
707 |
|
708 |
def getCenterPoint(self): |
709 |
""" |
710 |
Returns the center. |
711 |
""" |
712 |
raise NotImplementedError() |
713 |
|
714 |
class Arc(ArcBase, Primitive): |
715 |
""" |
716 |
Defines an arc which is strictly smaller than pi. |
717 |
""" |
718 |
def __init__(self,center,start,end): |
719 |
""" |
720 |
Creates an arc defined by the start point, end point and center. |
721 |
""" |
722 |
if not isinstance(center,Point): raise TypeError("center needs to be a Point object.") |
723 |
if not isinstance(end,Point): raise TypeError("end needs to be a Point object.") |
724 |
if not isinstance(start,Point): raise TypeError("start needs to be a Point object.") |
725 |
if center.isColocated(end): raise TypeError("center and start point are colocated.") |
726 |
if center.isColocated(start): raise TypeError("center end end point are colocated.") |
727 |
if start.isColocated(end): raise TypeError("start and end are colocated.") |
728 |
# TODO: check length of circle. |
729 |
ArcBase.__init__(self) |
730 |
Primitive.__init__(self) |
731 |
self.__center=center |
732 |
self.__start=start |
733 |
self.__end=end |
734 |
|
735 |
def __neg__(self): |
736 |
""" |
737 |
Returns a view onto the curve with reversed ordering. |
738 |
""" |
739 |
return ReverseArc(self) |
740 |
|
741 |
def getStartPoint(self): |
742 |
""" |
743 |
Returns the start point. |
744 |
""" |
745 |
return self.__start |
746 |
|
747 |
def getEndPoint(self): |
748 |
""" |
749 |
Returns the end point. |
750 |
""" |
751 |
return self.__end |
752 |
|
753 |
def getCenterPoint(self): |
754 |
""" |
755 |
Returns the center point. |
756 |
""" |
757 |
return self.__center |
758 |
|
759 |
def substitute(self,sub_dict): |
760 |
""" |
761 |
Returns a copy of self with substitutes for the primitives used to |
762 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
763 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
764 |
new instance with substituted arguments is returned. |
765 |
""" |
766 |
if not sub_dict.has_key(self): |
767 |
sub_dict[self]=Arc(self.getCenterPoint().substitute(sub_dict),self.getStartPoint().substitute(sub_dict),self.getEndPoint().substitute(sub_dict)) |
768 |
return sub_dict[self] |
769 |
|
770 |
def isColocated(self,primitive): |
771 |
""" |
772 |
Returns True if curves are at the same position. |
773 |
""" |
774 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
775 |
if isinstance(primitive.getUnderlyingPrimitive(),Arc): |
776 |
return (self.getCenterPoint().isColocated(primitive.getCenterPoint())) and ( \ |
777 |
(self.getEndPoint().isColocated(primitive.getEndPoint()) and self.getStartPoint().isColocated(primitive.getStartPoint()) ) \ |
778 |
or (self.getEndPoint().isColocated(primitive.getStartPoint()) and self.getStartPoint().isColocated(primitive.getEndPoint()) ) ) |
779 |
return False |
780 |
|
781 |
class ReverseArc(ArcBase, ReversePrimitive): |
782 |
""" |
783 |
Defines an arc which is strictly smaller than pi. |
784 |
""" |
785 |
def __init__(self,arc): |
786 |
""" |
787 |
Creates an arc defined by the start point, end point and center. |
788 |
""" |
789 |
if not isinstance(arc, Arc): |
790 |
raise TypeError("ReverseCurve needs to be an instance of Arc") |
791 |
ArcBase.__init__(self) |
792 |
ReversePrimitive.__init__(self,arc) |
793 |
|
794 |
def getStartPoint(self): |
795 |
""" |
796 |
Returns the start point. |
797 |
""" |
798 |
return self.getUnderlyingPrimitive().getEndPoint() |
799 |
|
800 |
def getEndPoint(self): |
801 |
""" |
802 |
Returns the end point. |
803 |
""" |
804 |
return self.getUnderlyingPrimitive().getStartPoint() |
805 |
|
806 |
def getCenterPoint(self): |
807 |
""" |
808 |
Returns the center point. |
809 |
""" |
810 |
return self.getUnderlyingPrimitive().getCenterPoint() |
811 |
|
812 |
class EllipseBase(Manifold1D): |
813 |
""" |
814 |
Base class for ellipses. |
815 |
""" |
816 |
def __init__(self): |
817 |
""" |
818 |
Initializes the ellipse. |
819 |
""" |
820 |
Manifold1D.__init__(self) |
821 |
|
822 |
def collectPrimitiveBases(self): |
823 |
""" |
824 |
Returns the primitives used to construct the ellipse. |
825 |
""" |
826 |
out=[self] |
827 |
out+=self.getStartPoint().collectPrimitiveBases() |
828 |
out+=self.getEndPoint().collectPrimitiveBases() |
829 |
out+=self.getCenterPoint().collectPrimitiveBases() |
830 |
out+=self.getPointOnMainAxis().collectPrimitiveBases() |
831 |
return out |
832 |
|
833 |
class Ellipse(EllipseBase, Primitive): |
834 |
""" |
835 |
Defines an ellipse which is strictly smaller than pi. |
836 |
""" |
837 |
def __init__(self,center,point_on_main_axis,start,end): |
838 |
""" |
839 |
Creates an ellipse defined by the start point, end point, the center |
840 |
and a point on the main axis. |
841 |
""" |
842 |
if not isinstance(center,Point): raise TypeError("center needs to be a Point object.") |
843 |
if not isinstance(end,Point): raise TypeError("end needs to be a Point object.") |
844 |
if not isinstance(start,Point): raise TypeError("start needs to be a Point object.") |
845 |
if not isinstance(point_on_main_axis,Point): raise TypeError("point on main axis needs to be a Point object.") |
846 |
if center.isColocated(end): raise TypeError("center and start point are colocated.") |
847 |
if center.isColocated(start): raise TypeError("center end end point are colocated.") |
848 |
if center.isColocated(point_on_main_axis): raise TypeError("center and point on main axis are colocated.") |
849 |
if start.isColocated(end): raise TypeError("start and end point are colocated.") |
850 |
# TODO: check length of circle. |
851 |
EllipseBase.__init__(self) |
852 |
Primitive.__init__(self) |
853 |
self.__center=center |
854 |
self.__start=start |
855 |
self.__end=end |
856 |
self.__point_on_main_axis=point_on_main_axis |
857 |
|
858 |
def __neg__(self): |
859 |
""" |
860 |
Returns a view onto the curve with reversed ordering. |
861 |
""" |
862 |
return ReverseEllipse(self) |
863 |
|
864 |
def getStartPoint(self): |
865 |
""" |
866 |
Returns the start point. |
867 |
""" |
868 |
return self.__start |
869 |
|
870 |
def getEndPoint(self): |
871 |
""" |
872 |
Returns the end point. |
873 |
""" |
874 |
return self.__end |
875 |
|
876 |
def getCenterPoint(self): |
877 |
""" |
878 |
Returns the center. |
879 |
""" |
880 |
return self.__center |
881 |
|
882 |
def getPointOnMainAxis(self): |
883 |
""" |
884 |
Returns a point on the main axis. |
885 |
""" |
886 |
return self.__point_on_main_axis |
887 |
|
888 |
def substitute(self,sub_dict): |
889 |
""" |
890 |
Returns a copy of self with substitutes for the primitives used to |
891 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
892 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
893 |
new instance with substituted arguments is returned. |
894 |
""" |
895 |
if not sub_dict.has_key(self): |
896 |
sub_dict[self]=Ellipse(self.getCenterPoint().substitute(sub_dict), |
897 |
self.getPointOnMainAxis().substitute(sub_dict), |
898 |
self.getStartPoint().substitute(sub_dict), |
899 |
self.getEndPoint().substitute(sub_dict)) |
900 |
return sub_dict[self] |
901 |
|
902 |
|
903 |
def isColocated(self,primitive): |
904 |
""" |
905 |
Returns True if curves are at the same position. |
906 |
""" |
907 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
908 |
if isinstance(primitive.getUnderlyingPrimitive(),Ellipse): |
909 |
self_c=self.getCenterPoint().getCoordinates() |
910 |
p=self.getPointOnMainAxis().getCoordinates()-self_c |
911 |
q=primitive.getPointOnMainAxis().getCoordinates()-self_c |
912 |
# are p and q orthogonal or collinear? |
913 |
len_p=math.sqrt(p[0]**2+p[1]**2+p[2]**2) |
914 |
len_q=math.sqrt(q[0]**2+q[1]**2+q[2]**2) |
915 |
p_q= abs(p[0]*q[0]+p[1]*q[1]+p[2]*q[2]) |
916 |
return ((p_q <= getToleranceForColocation() * len_q * p_q) or \ |
917 |
(abs(p_q - len_q * p_q) <= getToleranceForColocation())) and \ |
918 |
self.getCenterPoint().isColocated(primitive.getCenterPoint()) and \ |
919 |
( \ |
920 |
(self.getEndPoint().isColocated(primitive.getEndPoint()) and \ |
921 |
self.getStartPoint().isColocated(primitive.getStartPoint()) ) \ |
922 |
or \ |
923 |
(self.getEndPoint().isColocated(primitive.getStartPoint()) and \ |
924 |
self.getStartPoint().isColocated(primitive.getEndPoint())) \ |
925 |
) |
926 |
return False |
927 |
|
928 |
class ReverseEllipse(EllipseBase, ReversePrimitive): |
929 |
""" |
930 |
Defines an ellipse which is strictly smaller than pi. |
931 |
""" |
932 |
def __init__(self,arc): |
933 |
""" |
934 |
Creates an instance of a reverse view to an ellipse. |
935 |
""" |
936 |
if not isinstance(arc, Ellipse): |
937 |
raise TypeError("ReverseCurve needs to be an instance of Ellipse") |
938 |
EllipseBase.__init__(self) |
939 |
ReversePrimitive.__init__(self,arc) |
940 |
|
941 |
def getStartPoint(self): |
942 |
""" |
943 |
Returns the start point. |
944 |
""" |
945 |
return self.getUnderlyingPrimitive().getEndPoint() |
946 |
|
947 |
def getEndPoint(self): |
948 |
""" |
949 |
Returns the end point. |
950 |
""" |
951 |
return self.getUnderlyingPrimitive().getStartPoint() |
952 |
|
953 |
def getCenterPoint(self): |
954 |
""" |
955 |
Returns the center point. |
956 |
""" |
957 |
return self.getUnderlyingPrimitive().getCenterPoint() |
958 |
|
959 |
def getPointOnMainAxis(self): |
960 |
""" |
961 |
Returns a point on the main axis. |
962 |
""" |
963 |
return self.getUnderlyingPrimitive().getPointOnMainAxis() |
964 |
|
965 |
|
966 |
class CurveLoop(Primitive, PrimitiveBase): |
967 |
""" |
968 |
An oriented loop of one-dimensional manifolds (= curves and arcs). |
969 |
|
970 |
The loop must be closed and the `Manifold1D` s should be oriented |
971 |
consistently. |
972 |
""" |
973 |
def __init__(self,*curves): |
974 |
""" |
975 |
Creates a polygon from a list of line curves. The curves must form a |
976 |
closed loop. |
977 |
""" |
978 |
if len(curves)==1: |
979 |
curves=curves[0] |
980 |
if not hasattr(curves,'__iter__'): raise ValueError("CurveLoop needs at least two points") |
981 |
if len(curves)<2: |
982 |
raise ValueError("At least two curves have to be given.") |
983 |
for i in range(len(curves)): |
984 |
if not isinstance(curves[i],Manifold1D): |
985 |
raise TypeError("%s-th argument is not a Manifold1D object."%i) |
986 |
# for the curves a loop: |
987 |
used=[ False for i in curves] |
988 |
self.__curves=list(curves) |
989 |
Primitive.__init__(self) |
990 |
PrimitiveBase.__init__(self) |
991 |
|
992 |
def getCurves(self): |
993 |
""" |
994 |
Returns the curves defining the CurveLoop. |
995 |
""" |
996 |
return self.__curves |
997 |
|
998 |
def __neg__(self): |
999 |
""" |
1000 |
Returns a view onto the curve with reversed ordering. |
1001 |
""" |
1002 |
return ReverseCurveLoop(self) |
1003 |
|
1004 |
def __len__(self): |
1005 |
""" |
1006 |
Returns the number of curves in the CurveLoop. |
1007 |
""" |
1008 |
return len(self.getCurves()) |
1009 |
|
1010 |
def collectPrimitiveBases(self): |
1011 |
""" |
1012 |
Returns primitives used to construct the CurveLoop. |
1013 |
""" |
1014 |
out=[self] |
1015 |
for c in self.getCurves(): out+=c.collectPrimitiveBases() |
1016 |
return out |
1017 |
|
1018 |
def substitute(self,sub_dict): |
1019 |
""" |
1020 |
Returns a copy of self with substitutes for the primitives used to |
1021 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1022 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1023 |
new instance with substituted arguments is returned. |
1024 |
""" |
1025 |
if not sub_dict.has_key(self): |
1026 |
new_c=[] |
1027 |
for c in self.getCurves(): new_c.append(c.substitute(sub_dict)) |
1028 |
sub_dict[self]=CurveLoop(*tuple(new_c)) |
1029 |
return sub_dict[self] |
1030 |
|
1031 |
def isColocated(self,primitive): |
1032 |
""" |
1033 |
Returns True if each curve is colocated with a curve in ``primitive``. |
1034 |
""" |
1035 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1036 |
if isinstance(primitive.getUnderlyingPrimitive(),CurveLoop): |
1037 |
if len(primitive) == len(self): |
1038 |
cp0=self.getCurves() |
1039 |
cp1=primitive.getCurves() |
1040 |
for c0 in cp0: |
1041 |
colocated = False |
1042 |
for c1 in cp1: |
1043 |
colocated = colocated or c0.isColocated(c1) |
1044 |
if not colocated: return False |
1045 |
return True |
1046 |
return False |
1047 |
|
1048 |
class ReverseCurveLoop(ReversePrimitive, PrimitiveBase): |
1049 |
""" |
1050 |
An oriented loop of one-dimensional manifolds (= curves and arcs). |
1051 |
|
1052 |
The loop must be closed and the one-dimensional manifolds should be |
1053 |
oriented consistently. |
1054 |
""" |
1055 |
def __init__(self,curve_loop): |
1056 |
""" |
1057 |
Creates a polygon from a list of line curves. The curves must form a |
1058 |
closed loop. |
1059 |
""" |
1060 |
if not isinstance(curve_loop, CurveLoop): |
1061 |
raise TypeError("arguments need to be an instance of CurveLoop.") |
1062 |
ReversePrimitive.__init__(self, curve_loop) |
1063 |
PrimitiveBase.__init__(self) |
1064 |
|
1065 |
def getCurves(self): |
1066 |
""" |
1067 |
Returns the curves defining the CurveLoop. |
1068 |
""" |
1069 |
return [ -c for c in self.getUnderlyingPrimitive().getCurves() ] |
1070 |
|
1071 |
def __len__(self): |
1072 |
return len(self.getUnderlyingPrimitive()) |
1073 |
|
1074 |
#= |
1075 |
class Manifold2D(PrimitiveBase): |
1076 |
""" |
1077 |
General two-dimensional manifold. |
1078 |
|
1079 |
:ivar LEFT: left element orientation when meshing with transifinite meshing |
1080 |
:ivar RIGHT: right element orientation when meshing with transifinite meshing |
1081 |
:ivar ALTERNATE: alternate element orientation when meshing with transifinite meshing |
1082 |
""" |
1083 |
LEFT="Left" |
1084 |
RIGHT="Right" |
1085 |
ALTERNATE="Alternate" |
1086 |
def __init__(self): |
1087 |
""" |
1088 |
Creates a two-dimensional manifold. |
1089 |
""" |
1090 |
PrimitiveBase.__init__(self) |
1091 |
self.setRecombination(None) |
1092 |
self.resetTransfiniteMeshing() |
1093 |
|
1094 |
def getBoundary(self): |
1095 |
""" |
1096 |
Returns a list of the one-dimensional manifolds forming the boundary |
1097 |
of the surface (including holes). |
1098 |
""" |
1099 |
raise NotImplementedError() |
1100 |
|
1101 |
def hasHole(self): |
1102 |
""" |
1103 |
Returns True if a hole is present. |
1104 |
""" |
1105 |
raise NotImplementedError() |
1106 |
|
1107 |
def getPoints(self): |
1108 |
""" |
1109 |
returns a list of points used to define the boundary |
1110 |
|
1111 |
:return: list of points used to define the boundary |
1112 |
:rtype: ``list`` of `Point` s |
1113 |
""" |
1114 |
out=[] |
1115 |
boundary=self.getBoundary() |
1116 |
for l in boundary: |
1117 |
for p in l.getBoundary(): |
1118 |
if not p in out: out.append(p) |
1119 |
return out |
1120 |
|
1121 |
def setRecombination(self, max_deviation=45*DEG): |
1122 |
""" |
1123 |
Recombines triangular meshes on the surface into mixed triangular/quadrangular meshes. |
1124 |
``max_deviation`` specifies the maximum derivation of the largest angle in the quadrangle |
1125 |
from the right angle. Use ``max_deviation``==``None`` to switch off recombination. |
1126 |
|
1127 |
:param max_deviation: maximum derivation of the largest angle in the quadrangle from the right angle. |
1128 |
:type max_deviation: ``float`` or ``None``. |
1129 |
""" |
1130 |
if not max_deviation==None: |
1131 |
if max_deviation<=0: |
1132 |
raise ValueError, "max_deviation must be positive." |
1133 |
if max_deviation/DEG>=90: |
1134 |
raise ValueError, "max_deviation must be smaller than 90 DEG" |
1135 |
self.__recombination_angle=max_deviation |
1136 |
|
1137 |
def getRecombination(self): |
1138 |
""" |
1139 |
returns max deviation from right angle in the recombination algorithm |
1140 |
|
1141 |
:return: max deviation from right angle in the recombination algorithm. If recombination is switched off, ``None`` is returned. |
1142 |
:rtype: ``float`` or ``None`` |
1143 |
""" |
1144 |
return self.__recombination_angle |
1145 |
|
1146 |
def setTransfiniteMeshing(self,orientation="Left"): |
1147 |
""" |
1148 |
applies 2D transfinite meshing to the surface. |
1149 |
|
1150 |
:param orientation: sets the orientation of the triangles. It is only used if recombination is not used. |
1151 |
:type orientation: `Manifold2D.LEFT`, `Manifold2D.RIGHT`, `Manifold2D.ALTERNATE` |
1152 |
:note: Transfinite meshing can not be applied if holes are present. |
1153 |
""" |
1154 |
if not orientation in [ Manifold2D.LEFT, Manifold2D.RIGHT, Manifold2D.ALTERNATE]: |
1155 |
raise ValueError,"invalid orientation %s."%orientation |
1156 |
if self.hasHole(): |
1157 |
raise ValueError,"transfinite meshing cannot be appled to surfaces with a hole." |
1158 |
b=self.getBoundary() |
1159 |
if len(b)>4 or len(b)<3: |
1160 |
raise ValueError,"transfinite meshing permits 3 or 4 boundary lines only." |
1161 |
for l in b: |
1162 |
if l.getElementDistribution() == None: raise ValueError,"transfinite meshing requires element distribution on all boundary lines." |
1163 |
start=b[0] |
1164 |
opposite=None |
1165 |
top=None |
1166 |
bottom=None |
1167 |
for l in b[1:]: |
1168 |
if l.getEndPoint() == start.getStartPoint(): |
1169 |
bottom=l |
1170 |
elif l.getStartPoint() == start.getEndPoint(): |
1171 |
top=l |
1172 |
else: |
1173 |
opposite=l |
1174 |
if top==None or bottom == None: |
1175 |
raise ValueError,"transfinite meshing cannot be applied to boundary is not closed. Most likely the orientation of some boundray segments is wrong." |
1176 |
if opposite == None: # three sides only |
1177 |
if not top.getElementDistribution() == bottom.getElementDistribution(): start, top, bottom= bottom, start, top |
1178 |
if not top.getElementDistribution() == bottom.getElementDistribution(): |
1179 |
raise ValueError,"transfinite meshing requires oposite faces to be have the same element distribution." |
1180 |
if not opposite == None: |
1181 |
if not start.getElementDistribution() == opposite.getElementDistribution(): |
1182 |
raise ValueError,"transfinite meshing requires oposite faces to be have the same element distribution." |
1183 |
if opposite == None: |
1184 |
if bottom.getEndPoint == top.getStartPoint(): |
1185 |
raise ValueError,"cannot identify corner proints for transfinite meshing." |
1186 |
else: |
1187 |
points=[ bottom.getStartPoint(), bottom.getEndPoint(), top.getStartPoint() ] |
1188 |
else: |
1189 |
points=[ bottom.getStartPoint(), bottom.getEndPoint(), top.getStartPoint(), top.getEndPoint() ] |
1190 |
self.__points=points |
1191 |
self.__orientation=orientation |
1192 |
self.__transfinitemeshing=True |
1193 |
|
1194 |
def resetTransfiniteMeshing(self): |
1195 |
""" |
1196 |
removes the transfinite meshing from the surface |
1197 |
""" |
1198 |
self.__transfinitemeshing=False |
1199 |
|
1200 |
def getTransfiniteMeshing(self): |
1201 |
""" |
1202 |
returns the transfinite meshing setings. If transfinite meshing is not set, ``None`` is returned. |
1203 |
|
1204 |
:return: a tuple of the tuple of points used to define the transfinite meshing and the orientation. If no points are set the points tuple is returned as ``None``. If no transfinite meshing is not set, ``None`` is returned. |
1205 |
:rtype: ``tuple`` of a ``tuple`` of `Point` s (or ``None``) and the orientation which is one of the values `Manifold2D.LEFT` , `Manifold2D.RIGHT` , `Manifold2D.ALTERNATE` |
1206 |
""" |
1207 |
if self.__transfinitemeshing: |
1208 |
return (self.__points, self.__orientation) |
1209 |
else: |
1210 |
return None |
1211 |
|
1212 |
class RuledSurface(Primitive, Manifold2D): |
1213 |
""" |
1214 |
A ruled surface, i.e. a surface that can be interpolated using transfinite |
1215 |
interpolation. |
1216 |
""" |
1217 |
def __init__(self,loop): |
1218 |
""" |
1219 |
Creates a ruled surface with boundary ``loop``. |
1220 |
|
1221 |
:param loop: `CurveLoop` defining the boundary of the surface. |
1222 |
""" |
1223 |
if not isinstance(loop.getUnderlyingPrimitive(),CurveLoop): |
1224 |
raise TypeError("argument loop needs to be a CurveLoop object.") |
1225 |
if len(loop)<2: |
1226 |
raise ValueError("the loop must contain at least two Curves.") |
1227 |
if len(loop)>4: |
1228 |
raise ValueError("the loop must contain at most four Curves.") |
1229 |
Primitive.__init__(self) |
1230 |
Manifold2D.__init__(self) |
1231 |
self.__loop=loop |
1232 |
|
1233 |
def hasHole(self): |
1234 |
""" |
1235 |
Returns True if a hole is present. |
1236 |
""" |
1237 |
return False |
1238 |
|
1239 |
def __neg__(self): |
1240 |
""" |
1241 |
Returns a view onto the suface with reversed ordering. |
1242 |
""" |
1243 |
return ReverseRuledSurface(self) |
1244 |
|
1245 |
def getBoundaryLoop(self): |
1246 |
""" |
1247 |
Returns the loop defining the outer boundary. |
1248 |
""" |
1249 |
return self.__loop |
1250 |
|
1251 |
def getBoundary(self): |
1252 |
""" |
1253 |
Returns a list of the one-dimensional manifolds forming the boundary |
1254 |
of the Surface (including holes). |
1255 |
""" |
1256 |
return self.getBoundaryLoop().getCurves() |
1257 |
|
1258 |
def substitute(self,sub_dict): |
1259 |
""" |
1260 |
Returns a copy of self with substitutes for the primitives used to |
1261 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1262 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1263 |
new instance with substituted arguments is returned. |
1264 |
""" |
1265 |
if not sub_dict.has_key(self): |
1266 |
sub_dict[self]=RuledSurface(self.getBoundaryLoop().substitute(sub_dict)) |
1267 |
return sub_dict[self] |
1268 |
|
1269 |
def isColocated(self,primitive): |
1270 |
""" |
1271 |
Returns True if each curve is colocated with a curve in ``primitive``. |
1272 |
""" |
1273 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1274 |
if isinstance(primitive.getUnderlyingPrimitive(),RuledSurface): |
1275 |
return self.getBoundaryLoop().isColocated(primitive.getBoundaryLoop()) |
1276 |
return False |
1277 |
|
1278 |
def collectPrimitiveBases(self): |
1279 |
""" |
1280 |
Returns primitives used to construct the Surface. |
1281 |
""" |
1282 |
return [self] + self.getBoundaryLoop().collectPrimitiveBases() |
1283 |
|
1284 |
def createRuledSurface(*curves): |
1285 |
""" |
1286 |
An easier way to create a `RuledSurface` from given curves. |
1287 |
""" |
1288 |
return RuledSurface(CurveLoop(*curves)) |
1289 |
|
1290 |
|
1291 |
class ReverseRuledSurface(ReversePrimitive, Manifold2D): |
1292 |
""" |
1293 |
Creates a view onto a `RuledSurface` but with reverse orientation. |
1294 |
""" |
1295 |
def __init__(self,surface): |
1296 |
""" |
1297 |
Creates a polygon from a list of line curves. The curves must form a |
1298 |
closed loop. |
1299 |
""" |
1300 |
if not isinstance(surface, RuledSurface): |
1301 |
raise TypeError("arguments need to be an instance of CurveLoop.") |
1302 |
ReversePrimitive.__init__(self, surface) |
1303 |
Manifold2D.__init__(self) |
1304 |
|
1305 |
def getBoundaryLoop(self): |
1306 |
""" |
1307 |
Returns the CurveLoop defining the ReverseRuledSurface. |
1308 |
""" |
1309 |
return -self.getUnderlyingPrimitive().getBoundaryLoop() |
1310 |
|
1311 |
def getBoundary(self): |
1312 |
""" |
1313 |
Returns a list of the one-dimensional manifolds forming the boundary |
1314 |
of the Surface (including holes). |
1315 |
""" |
1316 |
return self.getBoundaryLoop().getCurves() |
1317 |
|
1318 |
def hasHole(self): |
1319 |
""" |
1320 |
Returns True if a hole is present. |
1321 |
""" |
1322 |
return False |
1323 |
|
1324 |
#============================== |
1325 |
class PlaneSurface(Primitive, Manifold2D): |
1326 |
""" |
1327 |
A plane surface with holes. |
1328 |
""" |
1329 |
def __init__(self,loop,holes=[]): |
1330 |
""" |
1331 |
Creates a plane surface with holes. |
1332 |
|
1333 |
:param loop: `CurveLoop` defining the boundary of the surface |
1334 |
:param holes: list of `CurveLoop` s defining holes in the surface |
1335 |
:note: A CurveLoop defining a hole should not have any lines in common |
1336 |
with the exterior CurveLoop. |
1337 |
:note: A CurveLoop defining a hole should not have any lines in common |
1338 |
with another CurveLoop defining a hole in the same surface. |
1339 |
""" |
1340 |
if not isinstance(loop.getUnderlyingPrimitive(),CurveLoop): |
1341 |
raise TypeError("argument loop needs to be a CurveLoop object.") |
1342 |
for i in range(len(holes)): |
1343 |
if not isinstance(holes[i].getUnderlyingPrimitive(), CurveLoop): |
1344 |
raise TypeError("%i-th hole needs to be a CurveLoop object.") |
1345 |
#TODO: check if lines and holes are in a plane |
1346 |
#TODO: are holes really holes? |
1347 |
Primitive.__init__(self) |
1348 |
Manifold2D.__init__(self) |
1349 |
self.__loop=loop |
1350 |
self.__holes=holes |
1351 |
|
1352 |
def hasHole(self): |
1353 |
""" |
1354 |
Returns True if a hole is present. |
1355 |
""" |
1356 |
return len(self.getHoles())>0 |
1357 |
|
1358 |
def getHoles(self): |
1359 |
""" |
1360 |
Returns the holes. |
1361 |
""" |
1362 |
return self.__holes |
1363 |
|
1364 |
def getBoundaryLoop(self): |
1365 |
""" |
1366 |
Returns the loop defining the boundary. |
1367 |
""" |
1368 |
return self.__loop |
1369 |
|
1370 |
def substitute(self,sub_dict): |
1371 |
""" |
1372 |
Returns a copy of self with substitutes for the primitives used to |
1373 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1374 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1375 |
new instance with substituted arguments is returned. |
1376 |
""" |
1377 |
if not sub_dict.has_key(self): |
1378 |
sub_dict[self]=PlaneSurface(self.getBoundaryLoop().substitute(sub_dict),[ h.substitute(sub_dict) for h in self.getHoles()]) |
1379 |
return sub_dict[self] |
1380 |
|
1381 |
def isColocated(self,primitive): |
1382 |
""" |
1383 |
Returns True if each curve is colocated with a curve in ``primitive``. |
1384 |
""" |
1385 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1386 |
if isinstance(primitive.getUnderlyingPrimitive(),PlaneSurface): |
1387 |
if self.getBoundaryLoop().isColocated(primitive.getBoundaryLoop()): |
1388 |
hs0=self.getHoles() |
1389 |
hs1=primitive.getHoles() |
1390 |
if len(hs0) == len(hs1): |
1391 |
for h0 in hs0: |
1392 |
colocated = False |
1393 |
for h1 in hs1: |
1394 |
colocated = colocated or h0.isColocated(h1) |
1395 |
if not colocated: return False |
1396 |
return True |
1397 |
return False |
1398 |
|
1399 |
def collectPrimitiveBases(self): |
1400 |
""" |
1401 |
Returns primitives used to construct the Surface. |
1402 |
""" |
1403 |
out=[self] + self.getBoundaryLoop().collectPrimitiveBases() |
1404 |
for i in self.getHoles(): out+=i.collectPrimitiveBases() |
1405 |
return out |
1406 |
|
1407 |
def __neg__(self): |
1408 |
""" |
1409 |
Returns a view onto the curve with reversed ordering. |
1410 |
""" |
1411 |
return ReversePlaneSurface(self) |
1412 |
|
1413 |
def getBoundary(self): |
1414 |
""" |
1415 |
Returns a list of the one-dimensional manifolds forming the boundary |
1416 |
of the Surface (including holes). |
1417 |
""" |
1418 |
out = []+ self.getBoundaryLoop().getCurves() |
1419 |
for h in self.getHoles(): out+=h.getCurves() |
1420 |
return out |
1421 |
|
1422 |
class ReversePlaneSurface(ReversePrimitive, Manifold2D): |
1423 |
""" |
1424 |
Creates a view onto a `PlaneSurface` but with reverse orientation. |
1425 |
""" |
1426 |
def __init__(self,surface): |
1427 |
""" |
1428 |
Creates a polygon from a `PlaneSurface`. |
1429 |
""" |
1430 |
if not isinstance(surface, PlaneSurface): |
1431 |
raise TypeError("arguments need to be an instance of PlaneSurface.") |
1432 |
ReversePrimitive.__init__(self, surface) |
1433 |
Manifold2D.__init__(self) |
1434 |
|
1435 |
def getBoundaryLoop(self): |
1436 |
""" |
1437 |
Returns the CurveLoop defining the ReversePlaneSurface. |
1438 |
""" |
1439 |
return -self.getUnderlyingPrimitive().getBoundaryLoop() |
1440 |
|
1441 |
def getHoles(self): |
1442 |
""" |
1443 |
Returns the holes. |
1444 |
""" |
1445 |
return [ -h for h in self.getUnderlyingPrimitive().getHoles() ] |
1446 |
|
1447 |
def getBoundary(self): |
1448 |
""" |
1449 |
Returns a list of the one-dimensional manifolds forming the boundary |
1450 |
of the Surface (including holes). |
1451 |
""" |
1452 |
out = [] + self.getBoundaryLoop().getCurves() |
1453 |
for h in self.getHoles(): out+=h.getCurves() |
1454 |
return out |
1455 |
|
1456 |
def hasHole(self): |
1457 |
""" |
1458 |
Returns True if a hole is present. |
1459 |
""" |
1460 |
return len(self.getHoles())>0 |
1461 |
|
1462 |
#========================================================================= |
1463 |
class SurfaceLoop(Primitive, PrimitiveBase): |
1464 |
""" |
1465 |
A loop of 2D primitives which defines the shell of a volume. |
1466 |
|
1467 |
The loop must represent a closed shell, and the primitives should be |
1468 |
oriented consistently. |
1469 |
""" |
1470 |
def __init__(self,*surfaces): |
1471 |
""" |
1472 |
Creates a surface loop. |
1473 |
""" |
1474 |
if len(surfaces)==1: |
1475 |
surfaces=surfaces[0] |
1476 |
if not hasattr(surfaces,'__iter__'): raise ValueError("SurfaceLoop needs at least two points") |
1477 |
if len(surfaces)<2: |
1478 |
raise ValueError("at least two surfaces have to be given.") |
1479 |
for i in range(len(surfaces)): |
1480 |
if not isinstance(surfaces[i].getUnderlyingPrimitive(),Manifold2D): |
1481 |
raise TypeError("%s-th argument is not a Manifold2D object."%i) |
1482 |
self.__surfaces=list(surfaces) |
1483 |
Primitive.__init__(self) |
1484 |
PrimitiveBase.__init__(self) |
1485 |
|
1486 |
def __len__(self): |
1487 |
""" |
1488 |
Returns the number of curves in the SurfaceLoop. |
1489 |
""" |
1490 |
return len(self.__surfaces) |
1491 |
|
1492 |
def __neg__(self): |
1493 |
""" |
1494 |
Returns a view onto the curve with reversed ordering. |
1495 |
""" |
1496 |
return ReverseSurfaceLoop(self) |
1497 |
|
1498 |
def getSurfaces(self): |
1499 |
""" |
1500 |
Returns the surfaces defining the SurfaceLoop. |
1501 |
""" |
1502 |
return self.__surfaces |
1503 |
|
1504 |
def collectPrimitiveBases(self): |
1505 |
""" |
1506 |
Returns primitives used to construct the SurfaceLoop. |
1507 |
""" |
1508 |
out=[self] |
1509 |
for c in self.getSurfaces(): out+=c.collectPrimitiveBases() |
1510 |
return out |
1511 |
|
1512 |
def substitute(self,sub_dict): |
1513 |
""" |
1514 |
Returns a copy of self with substitutes for the primitives used to |
1515 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1516 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1517 |
new instance with substituted arguments is returned. |
1518 |
""" |
1519 |
if not sub_dict.has_key(self): |
1520 |
new_s=[] |
1521 |
for s in self.getSurfaces(): new_s.append(s.substitute(sub_dict)) |
1522 |
sub_dict[self]=SurfaceLoop(*tuple(new_s)) |
1523 |
return sub_dict[self] |
1524 |
|
1525 |
def isColocated(self,primitive): |
1526 |
""" |
1527 |
Returns True if each surface is colocated with a curve in ``primitive`` |
1528 |
and vice versa. |
1529 |
""" |
1530 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1531 |
if isinstance(primitive.getUnderlyingPrimitive(),SurfaceLoop): |
1532 |
if len(primitive) == len(self): |
1533 |
sp0=self.getSurfaces() |
1534 |
sp1=primitive.getSurfaces() |
1535 |
for s0 in sp0: |
1536 |
colocated = False |
1537 |
for s1 in sp1: |
1538 |
colocated = colocated or s0.isColocated(s1) |
1539 |
if not colocated: return False |
1540 |
return True |
1541 |
return False |
1542 |
|
1543 |
class ReverseSurfaceLoop(ReversePrimitive, PrimitiveBase): |
1544 |
""" |
1545 |
A view of a SurfaceLoop with reverse orientation. |
1546 |
|
1547 |
The loop must represent a closed shell and the primitives should be |
1548 |
oriented consistently. |
1549 |
""" |
1550 |
def __init__(self,surface_loop): |
1551 |
""" |
1552 |
Creates a polygon from a list of line surfaces. The curves must form |
1553 |
a closed loop. |
1554 |
""" |
1555 |
if not isinstance(surface_loop, SurfaceLoop): |
1556 |
raise TypeError("arguments need to be an instance of SurfaceLoop.") |
1557 |
ReversePrimitive.__init__(self, surface_loop) |
1558 |
PrimitiveBase.__init__(self) |
1559 |
|
1560 |
def getSurfaces(self): |
1561 |
""" |
1562 |
Returns the surfaces defining the SurfaceLoop. |
1563 |
""" |
1564 |
return [ -s for s in self.getUnderlyingPrimitive().getSurfaces() ] |
1565 |
|
1566 |
def __len__(self): |
1567 |
return len(self.getUnderlyingPrimitive()) |
1568 |
|
1569 |
#============================== |
1570 |
class Manifold3D(PrimitiveBase): |
1571 |
""" |
1572 |
General three-dimensional manifold. |
1573 |
""" |
1574 |
def __init__(self): |
1575 |
""" |
1576 |
Creates a three-dimensional manifold. |
1577 |
""" |
1578 |
PrimitiveBase.__init__(self) |
1579 |
|
1580 |
def getBoundary(self): |
1581 |
""" |
1582 |
Returns a list of the one-dimensional manifolds forming the boundary |
1583 |
of the volume (including holes). |
1584 |
""" |
1585 |
raise NotImplementedError() |
1586 |
|
1587 |
class Volume(Manifold3D, Primitive): |
1588 |
""" |
1589 |
A volume with holes. |
1590 |
""" |
1591 |
def __init__(self,loop,holes=[]): |
1592 |
""" |
1593 |
Creates a volume with holes. |
1594 |
|
1595 |
:param loop: `SurfaceLoop` defining the boundary of the surface |
1596 |
:param holes: list of `SurfaceLoop` defining holes in the surface |
1597 |
:note: A SurfaceLoop defining a hole should not have any surfaces in |
1598 |
common with the exterior SurfaceLoop. |
1599 |
:note: A SurfaceLoop defining a hole should not have any surfaces in |
1600 |
common with another SurfaceLoop defining a hole in the same |
1601 |
volume. |
1602 |
""" |
1603 |
if not isinstance(loop.getUnderlyingPrimitive(), SurfaceLoop): |
1604 |
raise TypeError("argument loop needs to be a SurfaceLoop object.") |
1605 |
for i in range(len(holes)): |
1606 |
if not isinstance(holes[i].getUnderlyingPrimitive(), SurfaceLoop): |
1607 |
raise TypeError("%i th hole needs to be a SurfaceLoop object.") |
1608 |
Primitive.__init__(self) |
1609 |
Manifold3D.__init__(self) |
1610 |
self.__loop=loop |
1611 |
self.__holes=holes |
1612 |
|
1613 |
def getHoles(self): |
1614 |
""" |
1615 |
Returns the holes in the volume. |
1616 |
""" |
1617 |
return self.__holes |
1618 |
|
1619 |
def getSurfaceLoop(self): |
1620 |
""" |
1621 |
Returns the loop forming the surface. |
1622 |
""" |
1623 |
return self.__loop |
1624 |
|
1625 |
def substitute(self,sub_dict): |
1626 |
""" |
1627 |
Returns a copy of self with substitutes for the primitives used to |
1628 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1629 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1630 |
new instance with substituted arguments is returned. |
1631 |
""" |
1632 |
if not sub_dict.has_key(self): |
1633 |
sub_dict[self]=Volume(self.getSurfaceLoop().substitute(sub_dict),[ h.substitute(sub_dict) for h in self.getHoles()]) |
1634 |
return sub_dict[self] |
1635 |
|
1636 |
def isColocated(self,primitive): |
1637 |
""" |
1638 |
Returns True if each curve is colocated with a curve in ``primitive``. |
1639 |
""" |
1640 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1641 |
if isinstance(primitive.getUnderlyingPrimitive(),Volume): |
1642 |
if self.getSurfaceLoop().isColocated(primitive.getSurfaceLoop()): |
1643 |
hs0=self.getHoles() |
1644 |
hs1=primitive.getHoles() |
1645 |
if len(hs0) == len(hs1): |
1646 |
for h0 in hs0: |
1647 |
colocated = False |
1648 |
for h1 in hs1: |
1649 |
colocated = colocated or h0.isColocated(h1) |
1650 |
if not colocated: return False |
1651 |
return True |
1652 |
return False |
1653 |
|
1654 |
def collectPrimitiveBases(self): |
1655 |
""" |
1656 |
Returns primitives used to construct the surface. |
1657 |
""" |
1658 |
out=[self] + self.getSurfaceLoop().collectPrimitiveBases() |
1659 |
for i in self.getHoles(): out+=i.collectPrimitiveBases() |
1660 |
return out |
1661 |
|
1662 |
def getBoundary(self): |
1663 |
""" |
1664 |
Returns a list of the one-dimensional manifolds forming the boundary |
1665 |
of the Surface (including holes). |
1666 |
""" |
1667 |
out = []+ self.getSurfaceLoop().getSurfaces() |
1668 |
for h in self.getHoles(): out+=h.getSurfaces() |
1669 |
return out |
1670 |
|
1671 |
class PropertySet(Primitive, PrimitiveBase): |
1672 |
""" |
1673 |
Defines a group of `Primitive` s which can be accessed through a name. |
1674 |
""" |
1675 |
def __init__(self,name,*items): |
1676 |
Primitive.__init__(self) |
1677 |
self.__dim=None |
1678 |
self.clearItems() |
1679 |
self.addItem(*items) |
1680 |
self.setName(name) |
1681 |
|
1682 |
def getDim(self): |
1683 |
""" |
1684 |
Returns the dimensionality of the items. |
1685 |
""" |
1686 |
if self.__dim == None: |
1687 |
items=self.getItems() |
1688 |
if len(items)>0: |
1689 |
if isinstance(items[0] ,Manifold1D): |
1690 |
self.__dim=1 |
1691 |
elif isinstance(items[0] ,Manifold2D): |
1692 |
self.__dim=2 |
1693 |
elif isinstance(items[0] ,Manifold3D): |
1694 |
self.__dim=3 |
1695 |
else: |
1696 |
self.__dim=0 |
1697 |
return self.__dim |
1698 |
|
1699 |
def __repr__(self): |
1700 |
""" |
1701 |
Returns a string representation. |
1702 |
""" |
1703 |
return "%s(%s)"%(self.getName(),self.getID()) |
1704 |
|
1705 |
def getManifoldClass(self): |
1706 |
""" |
1707 |
Returns the manifold class expected from items. |
1708 |
""" |
1709 |
d=self.getDim() |
1710 |
if d == None: |
1711 |
raise ValueError("undefined spatial diemnsion.") |
1712 |
else: |
1713 |
if d==0: |
1714 |
return Point |
1715 |
elif d==1: |
1716 |
return Manifold1D |
1717 |
elif d==2: |
1718 |
return Manifold2D |
1719 |
else: |
1720 |
return Manifold3D |
1721 |
|
1722 |
def getName(self): |
1723 |
""" |
1724 |
Returns the name of the set. |
1725 |
""" |
1726 |
return self.__name |
1727 |
|
1728 |
def setName(self,name): |
1729 |
""" |
1730 |
Sets the name. |
1731 |
""" |
1732 |
self.__name=str(name) |
1733 |
|
1734 |
def addItems(self,*items): |
1735 |
""" |
1736 |
Adds items. An item my be any `Primitive` but no `PropertySet`. |
1737 |
""" |
1738 |
self.addItem(*items) |
1739 |
|
1740 |
def addItem(self,*items): |
1741 |
""" |
1742 |
Adds items. An item my be any `Primitive` but no `PropertySet`. |
1743 |
""" |
1744 |
for i in items: |
1745 |
if not (isinstance(i, Manifold1D) or isinstance(i, Manifold2D) or isinstance(i, Manifold3D) ): |
1746 |
raise TypeError, "Illegal argument type %s added to PropertySet."%(i.__class__) |
1747 |
for i in items: |
1748 |
if not i in self.__items: |
1749 |
if len(self.__items)>0: |
1750 |
m=self.getManifoldClass() |
1751 |
if not isinstance(i, m): |
1752 |
raise TypeError("argument %s is not a %s class object."%(i, m.__name__)) |
1753 |
self.__items.append(i) |
1754 |
|
1755 |
def getNumItems(self): |
1756 |
""" |
1757 |
Returns the number of items in the property set. |
1758 |
""" |
1759 |
return len(self.__items) |
1760 |
|
1761 |
def getItems(self): |
1762 |
""" |
1763 |
Returns the list of items. |
1764 |
""" |
1765 |
return self.__items |
1766 |
|
1767 |
def clearItems(self): |
1768 |
""" |
1769 |
Clears the list of items. |
1770 |
""" |
1771 |
self.__items=[] |
1772 |
|
1773 |
def collectPrimitiveBases(self): |
1774 |
""" |
1775 |
Returns primitives used to construct the PropertySet. |
1776 |
""" |
1777 |
out=[self] |
1778 |
for i in self.getItems(): out+=i.collectPrimitiveBases() |
1779 |
return out |
1780 |
|
1781 |
def getTag(self): |
1782 |
""" |
1783 |
Returns the tag used for this property set. |
1784 |
""" |
1785 |
return self.getID() |
1786 |
|