1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2012 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2012 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="https://launchpad.net/escript-finley" |
21 |
|
22 |
""" |
23 |
transformations |
24 |
|
25 |
:var __author__: name of author |
26 |
:var __copyright__: copyrights |
27 |
:var __license__: licence agreement |
28 |
:var __url__: url entry point on documentation |
29 |
:var __version__: version |
30 |
:var __date__: date of the version |
31 |
:var DEG: unit of degree |
32 |
:var RAD: unit of radiant |
33 |
""" |
34 |
|
35 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
36 |
|
37 |
import numpy |
38 |
import math |
39 |
|
40 |
_TYPE=numpy.float64 |
41 |
DEG=math.pi/180. |
42 |
RAD=1. |
43 |
class Transformation(object): |
44 |
""" |
45 |
General class to define an affine transformation *x->Ax+b*. |
46 |
""" |
47 |
def __init__(self): |
48 |
""" |
49 |
Creates a linear transformation. |
50 |
""" |
51 |
pass |
52 |
|
53 |
def __call__(self,x=numpy.zeros((3,))): |
54 |
""" |
55 |
Applies transformation to ``x``. |
56 |
""" |
57 |
raise NotImplementeError() |
58 |
|
59 |
class Translation(Transformation): |
60 |
""" |
61 |
Defines a translation *x->x+b*. |
62 |
""" |
63 |
def __init__(self,b=numpy.zeros((3,),dtype=_TYPE)): |
64 |
""" |
65 |
Creates the linear transformation *x->x+b*. |
66 |
""" |
67 |
super(Translation, self).__init__() |
68 |
self.__b=numpy.array(b,_TYPE) |
69 |
|
70 |
def __call__(self,x=numpy.zeros((3,))): |
71 |
""" |
72 |
Applies translation to ``x``. |
73 |
""" |
74 |
return numpy.array(x,_TYPE)+self.__b |
75 |
|
76 |
class Rotatation(Transformation): |
77 |
""" |
78 |
Defines a rotation. |
79 |
""" |
80 |
def __init__(self,axis=numpy.ones((3,),dtype=_TYPE),point=numpy.zeros((3,),dtype=_TYPE),angle=0.*RAD): |
81 |
""" |
82 |
Creates a rotation using an axis and a point on the axis. |
83 |
""" |
84 |
self.__axis=numpy.array(axis,dtype=_TYPE) |
85 |
self.__point=numpy.array(point,dtype=_TYPE) |
86 |
lax=numpy.dot(self.__axis,self.__axis) |
87 |
if not lax>0: |
88 |
raise ValueError("points must be distinct.") |
89 |
self.__axis/=math.sqrt(lax) |
90 |
self.__angle=float(angle) |
91 |
|
92 |
def __call__(self,x=numpy.zeros((3,))): |
93 |
""" |
94 |
Applies the rotation to ``x``. |
95 |
""" |
96 |
x=numpy.array(x,_TYPE) |
97 |
z=x-self.__point |
98 |
z0=numpy.dot(z,self.__axis) |
99 |
z_per=z-z0*self.__axis |
100 |
lz_per=numpy.dot(z_per,z_per) |
101 |
if lz_per>0: |
102 |
axis1=z_per/math.sqrt(lz_per) |
103 |
axis2=_cross(axis1,self.__axis) |
104 |
lax2=numpy.dot(axis2,axis2) |
105 |
if lax2>0: |
106 |
axis2/=math.sqrt(lax2) |
107 |
return z0*self.__axis+math.sqrt(lz_per)*(math.cos(self.__angle)*axis1-math.sin(self.__angle)*axis2)+self.__point |
108 |
else: |
109 |
return x |
110 |
else: |
111 |
return x |
112 |
|
113 |
def _cross(x, y): |
114 |
""" |
115 |
Returns the cross product of ``x`` and ``y``. |
116 |
""" |
117 |
return numpy.array([x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y[1] - x[1] * y[0]], _TYPE) |
118 |
|
119 |
class Dilation(Transformation): |
120 |
""" |
121 |
Defines a dilation. |
122 |
""" |
123 |
def __init__(self,factor=1.,center=numpy.zeros((3,),dtype=_TYPE)): |
124 |
""" |
125 |
Creates a dilation with a center and a given expansion/contraction |
126 |
factor. |
127 |
""" |
128 |
if not abs(factor)>0: |
129 |
raise ValueError("factor must be non-zero.") |
130 |
self.__factor=factor |
131 |
self.__center=numpy.array(center,dtype=_TYPE) |
132 |
|
133 |
def __call__(self,x=numpy.zeros((3,))): |
134 |
""" |
135 |
Applies dilation to ``x``. |
136 |
""" |
137 |
x=numpy.array(x,_TYPE) |
138 |
return self.__factor*(x-self.__center)+self.__center |
139 |
|
140 |
class Reflection(Transformation): |
141 |
""" |
142 |
Defines a reflection on a plane. |
143 |
""" |
144 |
def __init__(self,normal=numpy.ones((3,),dtype=_TYPE),offset=0.): |
145 |
""" |
146 |
Defines a reflection on a plane defined in normal form. |
147 |
""" |
148 |
self.__normal=numpy.array(normal,dtype=_TYPE) |
149 |
ln=math.sqrt(numpy.dot(self.__normal,self.__normal)) |
150 |
if not ln>0.: |
151 |
raise ValueError("normal must have positive length.") |
152 |
self.__normal/=ln |
153 |
if isinstance(offset,float) or isinstance(offset,int): |
154 |
self.__offset=offset/ln |
155 |
else: |
156 |
self.__offset=numpy.dot(numpy.array(offset,dtype=_TYPE),self.__normal) |
157 |
|
158 |
def __call__(self,x=numpy.zeros((3,))): |
159 |
""" |
160 |
Applies reflection to ``x``. |
161 |
""" |
162 |
x=numpy.array(x,_TYPE) |
163 |
return x - 2*(numpy.dot(x,self.__normal)-self.__offset)*self.__normal |
164 |
|