1 |
|
2 |
############################################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2020 by The University of Queensland |
5 |
# http://www.uq.edu.au |
6 |
# |
7 |
# Primary Business: Queensland, Australia |
8 |
# Licensed under the Apache License, version 2.0 |
9 |
# http://www.apache.org/licenses/LICENSE-2.0 |
10 |
# |
11 |
# Development until 2012 by Earth Systems Science Computational Center (ESSCC) |
12 |
# Development 2012-2013 by School of Earth Sciences |
13 |
# Development from 2014 by Centre for Geoscience Computing (GeoComp) |
14 |
# Development from 2019 by School of Earth and Environmental Sciences |
15 |
# |
16 |
############################################################################## |
17 |
|
18 |
from __future__ import print_function, division |
19 |
|
20 |
__copyright__="""Copyright (c) 2003-2020 by The University of Queensland |
21 |
http://www.uq.edu.au |
22 |
Primary Business: Queensland, Australia""" |
23 |
__license__="""Licensed under the Apache License, version 2.0 |
24 |
http://www.apache.org/licenses/LICENSE-2.0""" |
25 |
__url__="https://launchpad.net/escript-finley" |
26 |
|
27 |
""" |
28 |
transformations |
29 |
|
30 |
:var __author__: name of author |
31 |
:var __copyright__: copyrights |
32 |
:var __license__: licence agreement |
33 |
:var __url__: url entry point on documentation |
34 |
:var __version__: version |
35 |
:var __date__: date of the version |
36 |
:var DEG: unit of degree |
37 |
:var RAD: unit of radiant |
38 |
""" |
39 |
|
40 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
41 |
|
42 |
import numpy |
43 |
import math |
44 |
|
45 |
_TYPE=numpy.float64 |
46 |
DEG=math.pi/180. |
47 |
RAD=1. |
48 |
class Transformation(object): |
49 |
""" |
50 |
General class to define an affine transformation *x->Ax+b*. |
51 |
""" |
52 |
def __init__(self): |
53 |
""" |
54 |
Creates a linear transformation. |
55 |
""" |
56 |
pass |
57 |
|
58 |
def __call__(self,x=numpy.zeros((3,))): |
59 |
""" |
60 |
Applies transformation to ``x``. |
61 |
""" |
62 |
raise NotImplementeError() |
63 |
|
64 |
class Translation(Transformation): |
65 |
""" |
66 |
Defines a translation *x->x+b*. |
67 |
""" |
68 |
def __init__(self,b=numpy.zeros((3,),dtype=_TYPE)): |
69 |
""" |
70 |
Creates the linear transformation *x->x+b*. |
71 |
""" |
72 |
super(Translation, self).__init__() |
73 |
self.__b=numpy.array(b,_TYPE) |
74 |
|
75 |
def __call__(self,x=numpy.zeros((3,))): |
76 |
""" |
77 |
Applies translation to ``x``. |
78 |
""" |
79 |
return numpy.array(x,_TYPE)+self.__b |
80 |
|
81 |
class Rotatation(Transformation): |
82 |
""" |
83 |
Defines a rotation. |
84 |
""" |
85 |
def __init__(self,axis=numpy.ones((3,),dtype=_TYPE),point=numpy.zeros((3,),dtype=_TYPE),angle=0.*RAD): |
86 |
""" |
87 |
Creates a rotation using an axis and a point on the axis. |
88 |
""" |
89 |
self.__axis=numpy.array(axis,dtype=_TYPE) |
90 |
self.__point=numpy.array(point,dtype=_TYPE) |
91 |
lax=numpy.dot(self.__axis,self.__axis) |
92 |
if not lax>0: |
93 |
raise ValueError("points must be distinct.") |
94 |
self.__axis/=math.sqrt(lax) |
95 |
self.__angle=float(angle) |
96 |
|
97 |
def __call__(self,x=numpy.zeros((3,))): |
98 |
""" |
99 |
Applies the rotation to ``x``. |
100 |
""" |
101 |
x=numpy.array(x,_TYPE) |
102 |
z=x-self.__point |
103 |
z0=numpy.dot(z,self.__axis) |
104 |
z_per=z-z0*self.__axis |
105 |
lz_per=numpy.dot(z_per,z_per) |
106 |
if lz_per>0: |
107 |
axis1=z_per/math.sqrt(lz_per) |
108 |
axis2=_cross(axis1,self.__axis) |
109 |
lax2=numpy.dot(axis2,axis2) |
110 |
if lax2>0: |
111 |
axis2/=math.sqrt(lax2) |
112 |
return z0*self.__axis+math.sqrt(lz_per)*(math.cos(self.__angle)*axis1-math.sin(self.__angle)*axis2)+self.__point |
113 |
else: |
114 |
return x |
115 |
else: |
116 |
return x |
117 |
|
118 |
def _cross(x, y): |
119 |
""" |
120 |
Returns the cross product of ``x`` and ``y``. |
121 |
""" |
122 |
return numpy.array([x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y[1] - x[1] * y[0]], _TYPE) |
123 |
|
124 |
class Dilation(Transformation): |
125 |
""" |
126 |
Defines a dilation. |
127 |
""" |
128 |
def __init__(self,factor=1.,center=numpy.zeros((3,),dtype=_TYPE)): |
129 |
""" |
130 |
Creates a dilation with a center and a given expansion/contraction |
131 |
factor. |
132 |
""" |
133 |
if not abs(factor)>0: |
134 |
raise ValueError("factor must be non-zero.") |
135 |
self.__factor=factor |
136 |
self.__center=numpy.array(center,dtype=_TYPE) |
137 |
|
138 |
def __call__(self,x=numpy.zeros((3,))): |
139 |
""" |
140 |
Applies dilation to ``x``. |
141 |
""" |
142 |
x=numpy.array(x,_TYPE) |
143 |
return self.__factor*(x-self.__center)+self.__center |
144 |
|
145 |
class Reflection(Transformation): |
146 |
""" |
147 |
Defines a reflection on a plane. |
148 |
""" |
149 |
def __init__(self,normal=numpy.ones((3,),dtype=_TYPE),offset=0.): |
150 |
""" |
151 |
Defines a reflection on a plane defined in normal form. |
152 |
""" |
153 |
self.__normal=numpy.array(normal,dtype=_TYPE) |
154 |
ln=math.sqrt(numpy.dot(self.__normal,self.__normal)) |
155 |
if not ln>0.: |
156 |
raise ValueError("normal must have positive length.") |
157 |
self.__normal/=ln |
158 |
if isinstance(offset,float) or isinstance(offset,int): |
159 |
self.__offset=offset/ln |
160 |
else: |
161 |
self.__offset=numpy.dot(numpy.array(offset,dtype=_TYPE),self.__normal) |
162 |
|
163 |
def __call__(self,x=numpy.zeros((3,))): |
164 |
""" |
165 |
Applies reflection to ``x``. |
166 |
""" |
167 |
x=numpy.array(x,_TYPE) |
168 |
return x - 2*(numpy.dot(x,self.__normal)-self.__offset)*self.__normal |
169 |
|