1 |
|
|
2 |
/******************************************************* |
/***************************************************************************** |
3 |
* |
* |
4 |
* Copyright (c) 2003-2011 by University of Queensland |
* Copyright (c) 2003-2014 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
* http://www.uq.edu.au |
|
* http://www.uq.edu.au/esscc |
|
6 |
* |
* |
7 |
* Primary Business: Queensland, Australia |
* Primary Business: Queensland, Australia |
8 |
* Licensed under the Open Software License version 3.0 |
* Licensed under the Open Software License version 3.0 |
9 |
* http://www.opensource.org/licenses/osl-3.0.php |
* http://www.opensource.org/licenses/osl-3.0.php |
10 |
* |
* |
11 |
*******************************************************/ |
* Development until 2012 by Earth Systems Science Computational Center (ESSCC) |
12 |
|
* Development 2012-2013 by School of Earth Sciences |
13 |
|
* Development from 2014 by Centre for Geoscience Computing (GeoComp) |
14 |
|
* |
15 |
|
*****************************************************************************/ |
16 |
|
|
17 |
|
#include <algorithm> |
18 |
|
|
19 |
#include <ripley/Rectangle.h> |
#include <ripley/Rectangle.h> |
20 |
extern "C" { |
#include <paso/SystemMatrix.h> |
21 |
#include "paso/SystemMatrixPattern.h" |
#include <esysUtils/esysFileWriter.h> |
22 |
} |
#include <ripley/DefaultAssembler2D.h> |
23 |
|
#include <ripley/WaveAssembler2D.h> |
24 |
|
#include <ripley/LameAssembler2D.h> |
25 |
|
#include <ripley/domainhelpers.h> |
26 |
|
#include <boost/scoped_array.hpp> |
27 |
|
#include "esysUtils/EsysRandom.h" |
28 |
|
#include "blocktools.h" |
29 |
|
|
30 |
|
#ifdef USE_NETCDF |
31 |
|
#include <netcdfcpp.h> |
32 |
|
#endif |
33 |
|
|
34 |
#if USE_SILO |
#if USE_SILO |
35 |
#include <silo.h> |
#include <silo.h> |
41 |
#include <iomanip> |
#include <iomanip> |
42 |
|
|
43 |
using namespace std; |
using namespace std; |
44 |
|
using esysUtils::FileWriter; |
45 |
|
|
46 |
namespace ripley { |
namespace ripley { |
47 |
|
|
48 |
Rectangle::Rectangle(int n0, int n1, double l0, double l1, int d0, int d1) : |
Rectangle::Rectangle(int n0, int n1, double x0, double y0, double x1, |
49 |
RipleyDomain(2), |
double y1, int d0, int d1, |
50 |
m_gNE0(n0), |
const std::vector<double>& points, |
51 |
m_gNE1(n1), |
const std::vector<int>& tags, |
52 |
m_l0(l0), |
const simap_t& tagnamestonums) : |
53 |
m_l1(l1), |
RipleyDomain(2) |
|
m_NX(d0), |
|
|
m_NY(d1) |
|
54 |
{ |
{ |
55 |
|
// ignore subdivision parameters for serial run |
56 |
|
if (m_mpiInfo->size == 1) { |
57 |
|
d0=1; |
58 |
|
d1=1; |
59 |
|
} |
60 |
|
|
61 |
|
bool warn=false; |
62 |
|
std::vector<int> factors; |
63 |
|
int ranks = m_mpiInfo->size; |
64 |
|
int epr[2] = {n0,n1}; |
65 |
|
int d[2] = {d0,d1}; |
66 |
|
if (d0<=0 || d1<=0) { |
67 |
|
for (int i = 0; i < 2; i++) { |
68 |
|
if (d[i] < 1) { |
69 |
|
d[i] = 1; |
70 |
|
continue; |
71 |
|
} |
72 |
|
epr[i] = -1; // can no longer be max |
73 |
|
//remove |
74 |
|
if (ranks % d[i] != 0) { |
75 |
|
throw RipleyException("Invalid number of spatial subdivisions"); |
76 |
|
} |
77 |
|
ranks /= d[i]; |
78 |
|
} |
79 |
|
factorise(factors, ranks); |
80 |
|
if (factors.size() != 0) { |
81 |
|
warn = true; |
82 |
|
} |
83 |
|
} |
84 |
|
|
85 |
|
while (factors.size() > 0) { |
86 |
|
int i = epr[0] > epr[1] ? 0 : 1; |
87 |
|
int f = factors.back(); |
88 |
|
factors.pop_back(); |
89 |
|
d[i] *= f; |
90 |
|
epr[i] /= f; |
91 |
|
} |
92 |
|
d0 = d[0]; d1 = d[1]; |
93 |
|
|
94 |
// ensure number of subdivisions is valid and nodes can be distributed |
// ensure number of subdivisions is valid and nodes can be distributed |
95 |
// among number of ranks |
// among number of ranks |
96 |
if (m_NX*m_NY != m_mpiInfo->size) |
if (d0*d1 != m_mpiInfo->size) |
97 |
throw RipleyException("Invalid number of spatial subdivisions"); |
throw RipleyException("Invalid number of spatial subdivisions"); |
98 |
|
|
99 |
if (n0%m_NX > 0 || n1%m_NY > 0) |
if (warn) { |
100 |
throw RipleyException("Number of elements must be separable into number of ranks in each dimension"); |
cout << "Warning: Automatic domain subdivision (d0=" << d0 << ", d1=" |
101 |
|
<< d1 << "). This may not be optimal!" << endl; |
102 |
|
} |
103 |
|
|
104 |
|
double l0 = x1-x0; |
105 |
|
double l1 = y1-y0; |
106 |
|
m_dx[0] = l0/n0; |
107 |
|
m_dx[1] = l1/n1; |
108 |
|
|
109 |
|
if ((n0+1)%d0 > 0) { |
110 |
|
n0=(int)round((float)(n0+1)/d0+0.5)*d0-1; |
111 |
|
l0=m_dx[0]*n0; |
112 |
|
cout << "Warning: Adjusted number of elements and length. N0=" |
113 |
|
<< n0 << ", l0=" << l0 << endl; |
114 |
|
} |
115 |
|
if ((n1+1)%d1 > 0) { |
116 |
|
n1=(int)round((float)(n1+1)/d1+0.5)*d1-1; |
117 |
|
l1=m_dx[1]*n1; |
118 |
|
cout << "Warning: Adjusted number of elements and length. N1=" |
119 |
|
<< n1 << ", l1=" << l1 << endl; |
120 |
|
} |
121 |
|
|
122 |
|
if ((d0 > 1 && (n0+1)/d0<2) || (d1 > 1 && (n1+1)/d1<2)) |
123 |
|
throw RipleyException("Too few elements for the number of ranks"); |
124 |
|
|
125 |
|
m_gNE[0] = n0; |
126 |
|
m_gNE[1] = n1; |
127 |
|
m_origin[0] = x0; |
128 |
|
m_origin[1] = y0; |
129 |
|
m_length[0] = l0; |
130 |
|
m_length[1] = l1; |
131 |
|
m_NX[0] = d0; |
132 |
|
m_NX[1] = d1; |
133 |
|
|
134 |
|
// local number of elements (with and without overlap) |
135 |
|
m_NE[0] = m_ownNE[0] = (d0>1 ? (n0+1)/d0 : n0); |
136 |
|
if (m_mpiInfo->rank%d0>0 && m_mpiInfo->rank%d0<d0-1) |
137 |
|
m_NE[0]++; |
138 |
|
else if (d0>1 && m_mpiInfo->rank%d0==d0-1) |
139 |
|
m_ownNE[0]--; |
140 |
|
|
141 |
|
m_NE[1] = m_ownNE[1] = (d1>1 ? (n1+1)/d1 : n1); |
142 |
|
if (m_mpiInfo->rank/d0>0 && m_mpiInfo->rank/d0<d1-1) |
143 |
|
m_NE[1]++; |
144 |
|
else if (d1>1 && m_mpiInfo->rank/d0==d1-1) |
145 |
|
m_ownNE[1]--; |
146 |
|
|
147 |
|
// local number of nodes |
148 |
|
m_NN[0] = m_NE[0]+1; |
149 |
|
m_NN[1] = m_NE[1]+1; |
150 |
|
|
|
// local number of elements |
|
|
m_NE0 = n0/m_NX; |
|
|
m_NE1 = n1/m_NY; |
|
|
// local number of nodes (not necessarily owned) |
|
|
m_N0 = m_NE0+1; |
|
|
m_N1 = m_NE1+1; |
|
151 |
// bottom-left node is at (offset0,offset1) in global mesh |
// bottom-left node is at (offset0,offset1) in global mesh |
152 |
m_offset0 = m_NE0*(m_mpiInfo->rank%m_NX); |
m_offset[0] = (n0+1)/d0*(m_mpiInfo->rank%d0); |
153 |
m_offset1 = m_NE1*(m_mpiInfo->rank/m_NX); |
if (m_offset[0] > 0) |
154 |
|
m_offset[0]--; |
155 |
|
m_offset[1] = (n1+1)/d1*(m_mpiInfo->rank/d0); |
156 |
|
if (m_offset[1] > 0) |
157 |
|
m_offset[1]--; |
158 |
|
|
159 |
populateSampleIds(); |
populateSampleIds(); |
160 |
|
createPattern(); |
161 |
|
assembler = new DefaultAssembler2D(this, m_dx, m_NX, m_NE, m_NN); |
162 |
|
for (map<string, int>::const_iterator i = tagnamestonums.begin(); |
163 |
|
i != tagnamestonums.end(); i++) { |
164 |
|
setTagMap(i->first, i->second); |
165 |
|
} |
166 |
|
addPoints(tags.size(), &points[0], &tags[0]); |
167 |
} |
} |
168 |
|
|
169 |
Rectangle::~Rectangle() |
Rectangle::~Rectangle() |
170 |
{ |
{ |
171 |
|
Paso_SystemMatrixPattern_free(m_pattern); |
172 |
|
Paso_Connector_free(m_connector); |
173 |
|
delete assembler; |
174 |
} |
} |
175 |
|
|
176 |
string Rectangle::getDescription() const |
string Rectangle::getDescription() const |
180 |
|
|
181 |
bool Rectangle::operator==(const AbstractDomain& other) const |
bool Rectangle::operator==(const AbstractDomain& other) const |
182 |
{ |
{ |
183 |
if (dynamic_cast<const Rectangle*>(&other)) |
const Rectangle* o=dynamic_cast<const Rectangle*>(&other); |
184 |
return this==&other; |
if (o) { |
185 |
|
return (RipleyDomain::operator==(other) && |
186 |
|
m_gNE[0]==o->m_gNE[0] && m_gNE[1]==o->m_gNE[1] |
187 |
|
&& m_origin[0]==o->m_origin[0] && m_origin[1]==o->m_origin[1] |
188 |
|
&& m_length[0]==o->m_length[0] && m_length[1]==o->m_length[1] |
189 |
|
&& m_NX[0]==o->m_NX[0] && m_NX[1]==o->m_NX[1]); |
190 |
|
} |
191 |
|
|
192 |
return false; |
return false; |
193 |
} |
} |
194 |
|
|
195 |
|
void Rectangle::readNcGrid(escript::Data& out, string filename, string varname, |
196 |
|
const ReaderParameters& params) const |
197 |
|
{ |
198 |
|
#ifdef USE_NETCDF |
199 |
|
// check destination function space |
200 |
|
int myN0, myN1; |
201 |
|
if (out.getFunctionSpace().getTypeCode() == Nodes) { |
202 |
|
myN0 = m_NN[0]; |
203 |
|
myN1 = m_NN[1]; |
204 |
|
} else if (out.getFunctionSpace().getTypeCode() == Elements || |
205 |
|
out.getFunctionSpace().getTypeCode() == ReducedElements) { |
206 |
|
myN0 = m_NE[0]; |
207 |
|
myN1 = m_NE[1]; |
208 |
|
} else |
209 |
|
throw RipleyException("readNcGrid(): invalid function space for output data object"); |
210 |
|
|
211 |
|
if (params.first.size() != 2) |
212 |
|
throw RipleyException("readNcGrid(): argument 'first' must have 2 entries"); |
213 |
|
|
214 |
|
if (params.numValues.size() != 2) |
215 |
|
throw RipleyException("readNcGrid(): argument 'numValues' must have 2 entries"); |
216 |
|
|
217 |
|
if (params.multiplier.size() != 2) |
218 |
|
throw RipleyException("readNcGrid(): argument 'multiplier' must have 2 entries"); |
219 |
|
for (size_t i=0; i<params.multiplier.size(); i++) |
220 |
|
if (params.multiplier[i]<1) |
221 |
|
throw RipleyException("readNcGrid(): all multipliers must be positive"); |
222 |
|
if (params.reverse.size() != 2) |
223 |
|
throw RipleyException("readNcGrid(): argument 'reverse' must have 2 entries"); |
224 |
|
|
225 |
|
// check file existence and size |
226 |
|
NcFile f(filename.c_str(), NcFile::ReadOnly); |
227 |
|
if (!f.is_valid()) |
228 |
|
throw RipleyException("readNcGrid(): cannot open file"); |
229 |
|
|
230 |
|
NcVar* var = f.get_var(varname.c_str()); |
231 |
|
if (!var) |
232 |
|
throw RipleyException("readNcGrid(): invalid variable"); |
233 |
|
|
234 |
|
// TODO: rank>0 data support |
235 |
|
const int numComp = out.getDataPointSize(); |
236 |
|
if (numComp > 1) |
237 |
|
throw RipleyException("readNcGrid(): only scalar data supported"); |
238 |
|
|
239 |
|
const int dims = var->num_dims(); |
240 |
|
boost::scoped_array<long> edges(var->edges()); |
241 |
|
|
242 |
|
// is this a slice of the data object (dims!=2)? |
243 |
|
// note the expected ordering of edges (as in numpy: y,x) |
244 |
|
if ( (dims==2 && (params.numValues[1] > edges[0] || params.numValues[0] > edges[1])) |
245 |
|
|| (dims==1 && params.numValues[1]>1) ) { |
246 |
|
throw RipleyException("readNcGrid(): not enough data in file"); |
247 |
|
} |
248 |
|
|
249 |
|
// check if this rank contributes anything |
250 |
|
if (params.first[0] >= m_offset[0]+myN0 || |
251 |
|
params.first[0]+params.numValues[0]*params.multiplier[0] <= m_offset[0] || |
252 |
|
params.first[1] >= m_offset[1]+myN1 || |
253 |
|
params.first[1]+params.numValues[1]*params.multiplier[1] <= m_offset[1]) |
254 |
|
return; |
255 |
|
|
256 |
|
// now determine how much this rank has to write |
257 |
|
|
258 |
|
// first coordinates in data object to write to |
259 |
|
const int first0 = max(0, params.first[0]-m_offset[0]); |
260 |
|
const int first1 = max(0, params.first[1]-m_offset[1]); |
261 |
|
// indices to first value in file (not accounting for reverse yet) |
262 |
|
int idx0 = max(0, m_offset[0]-params.first[0]); |
263 |
|
int idx1 = max(0, m_offset[1]-params.first[1]); |
264 |
|
// number of values to read |
265 |
|
const int num0 = min(params.numValues[0]-idx0, myN0-first0); |
266 |
|
const int num1 = min(params.numValues[1]-idx1, myN1-first1); |
267 |
|
|
268 |
|
// make sure we read the right block if going backwards through file |
269 |
|
if (params.reverse[0]) |
270 |
|
idx0 = edges[dims-1]-num0-idx0; |
271 |
|
if (dims>1 && params.reverse[1]) |
272 |
|
idx1 = edges[dims-2]-num1-idx1; |
273 |
|
|
274 |
|
vector<double> values(num0*num1); |
275 |
|
if (dims==2) { |
276 |
|
var->set_cur(idx1, idx0); |
277 |
|
var->get(&values[0], num1, num0); |
278 |
|
} else { |
279 |
|
var->set_cur(idx0); |
280 |
|
var->get(&values[0], num0); |
281 |
|
} |
282 |
|
|
283 |
|
const int dpp = out.getNumDataPointsPerSample(); |
284 |
|
out.requireWrite(); |
285 |
|
|
286 |
|
// helpers for reversing |
287 |
|
const int x0 = (params.reverse[0] ? num0-1 : 0); |
288 |
|
const int x_mult = (params.reverse[0] ? -1 : 1); |
289 |
|
const int y0 = (params.reverse[1] ? num1-1 : 0); |
290 |
|
const int y_mult = (params.reverse[1] ? -1 : 1); |
291 |
|
|
292 |
|
for (index_t y=0; y<num1; y++) { |
293 |
|
#pragma omp parallel for |
294 |
|
for (index_t x=0; x<num0; x++) { |
295 |
|
const int baseIndex = first0+x*params.multiplier[0] |
296 |
|
+(first1+y*params.multiplier[1])*myN0; |
297 |
|
const int srcIndex = (y0+y_mult*y)*num0+(x0+x_mult*x); |
298 |
|
if (!isnan(values[srcIndex])) { |
299 |
|
for (index_t m1=0; m1<params.multiplier[1]; m1++) { |
300 |
|
for (index_t m0=0; m0<params.multiplier[0]; m0++) { |
301 |
|
const int dataIndex = baseIndex+m0+m1*myN0; |
302 |
|
double* dest = out.getSampleDataRW(dataIndex); |
303 |
|
for (index_t q=0; q<dpp; q++) { |
304 |
|
*dest++ = values[srcIndex]; |
305 |
|
} |
306 |
|
} |
307 |
|
} |
308 |
|
} |
309 |
|
} |
310 |
|
} |
311 |
|
#else |
312 |
|
throw RipleyException("readNcGrid(): not compiled with netCDF support"); |
313 |
|
#endif |
314 |
|
} |
315 |
|
|
316 |
|
void Rectangle::readBinaryGrid(escript::Data& out, string filename, |
317 |
|
const ReaderParameters& params) const |
318 |
|
{ |
319 |
|
// the mapping is not universally correct but should work on our |
320 |
|
// supported platforms |
321 |
|
switch (params.dataType) { |
322 |
|
case DATATYPE_INT32: |
323 |
|
readBinaryGridImpl<int>(out, filename, params); |
324 |
|
break; |
325 |
|
case DATATYPE_FLOAT32: |
326 |
|
readBinaryGridImpl<float>(out, filename, params); |
327 |
|
break; |
328 |
|
case DATATYPE_FLOAT64: |
329 |
|
readBinaryGridImpl<double>(out, filename, params); |
330 |
|
break; |
331 |
|
default: |
332 |
|
throw RipleyException("readBinaryGrid(): invalid or unsupported datatype"); |
333 |
|
} |
334 |
|
} |
335 |
|
|
336 |
|
void Rectangle::readBinaryGridFromZipped(escript::Data& out, string filename, |
337 |
|
const ReaderParameters& params) const |
338 |
|
{ |
339 |
|
// the mapping is not universally correct but should work on our |
340 |
|
// supported platforms |
341 |
|
switch (params.dataType) { |
342 |
|
case DATATYPE_INT32: |
343 |
|
readBinaryGridZippedImpl<int>(out, filename, params); |
344 |
|
break; |
345 |
|
case DATATYPE_FLOAT32: |
346 |
|
readBinaryGridZippedImpl<float>(out, filename, params); |
347 |
|
break; |
348 |
|
case DATATYPE_FLOAT64: |
349 |
|
readBinaryGridZippedImpl<double>(out, filename, params); |
350 |
|
break; |
351 |
|
default: |
352 |
|
throw RipleyException("readBinaryGridFromZipped(): invalid or unsupported datatype"); |
353 |
|
} |
354 |
|
} |
355 |
|
|
356 |
|
template<typename ValueType> |
357 |
|
void Rectangle::readBinaryGridImpl(escript::Data& out, const string& filename, |
358 |
|
const ReaderParameters& params) const |
359 |
|
{ |
360 |
|
// check destination function space |
361 |
|
int myN0, myN1; |
362 |
|
if (out.getFunctionSpace().getTypeCode() == Nodes) { |
363 |
|
myN0 = m_NN[0]; |
364 |
|
myN1 = m_NN[1]; |
365 |
|
} else if (out.getFunctionSpace().getTypeCode() == Elements || |
366 |
|
out.getFunctionSpace().getTypeCode() == ReducedElements) { |
367 |
|
myN0 = m_NE[0]; |
368 |
|
myN1 = m_NE[1]; |
369 |
|
} else |
370 |
|
throw RipleyException("readBinaryGrid(): invalid function space for output data object"); |
371 |
|
|
372 |
|
// check file existence and size |
373 |
|
ifstream f(filename.c_str(), ifstream::binary); |
374 |
|
if (f.fail()) { |
375 |
|
throw RipleyException("readBinaryGrid(): cannot open file"); |
376 |
|
} |
377 |
|
f.seekg(0, ios::end); |
378 |
|
const int numComp = out.getDataPointSize(); |
379 |
|
const int filesize = f.tellg(); |
380 |
|
const int reqsize = params.numValues[0]*params.numValues[1]*numComp*sizeof(ValueType); |
381 |
|
if (filesize < reqsize) { |
382 |
|
f.close(); |
383 |
|
throw RipleyException("readBinaryGrid(): not enough data in file"); |
384 |
|
} |
385 |
|
|
386 |
|
// check if this rank contributes anything |
387 |
|
if (params.first[0] >= m_offset[0]+myN0 || |
388 |
|
params.first[0]+params.numValues[0] <= m_offset[0] || |
389 |
|
params.first[1] >= m_offset[1]+myN1 || |
390 |
|
params.first[1]+params.numValues[1] <= m_offset[1]) { |
391 |
|
f.close(); |
392 |
|
return; |
393 |
|
} |
394 |
|
|
395 |
|
// now determine how much this rank has to write |
396 |
|
|
397 |
|
// first coordinates in data object to write to |
398 |
|
const int first0 = max(0, params.first[0]-m_offset[0]); |
399 |
|
const int first1 = max(0, params.first[1]-m_offset[1]); |
400 |
|
// indices to first value in file |
401 |
|
const int idx0 = max(0, m_offset[0]-params.first[0]); |
402 |
|
const int idx1 = max(0, m_offset[1]-params.first[1]); |
403 |
|
// number of values to read |
404 |
|
const int num0 = min(params.numValues[0]-idx0, myN0-first0); |
405 |
|
const int num1 = min(params.numValues[1]-idx1, myN1-first1); |
406 |
|
|
407 |
|
out.requireWrite(); |
408 |
|
vector<ValueType> values(num0*numComp); |
409 |
|
const int dpp = out.getNumDataPointsPerSample(); |
410 |
|
|
411 |
|
for (int y=0; y<num1; y++) { |
412 |
|
const int fileofs = numComp*(idx0+(idx1+y)*params.numValues[0]); |
413 |
|
f.seekg(fileofs*sizeof(ValueType)); |
414 |
|
f.read((char*)&values[0], num0*numComp*sizeof(ValueType)); |
415 |
|
for (int x=0; x<num0; x++) { |
416 |
|
const int baseIndex = first0+x*params.multiplier[0] |
417 |
|
+(first1+y*params.multiplier[1])*myN0; |
418 |
|
for (int m1=0; m1<params.multiplier[1]; m1++) { |
419 |
|
for (int m0=0; m0<params.multiplier[0]; m0++) { |
420 |
|
const int dataIndex = baseIndex+m0+m1*myN0; |
421 |
|
double* dest = out.getSampleDataRW(dataIndex); |
422 |
|
for (int c=0; c<numComp; c++) { |
423 |
|
ValueType val = values[x*numComp+c]; |
424 |
|
|
425 |
|
if (params.byteOrder != BYTEORDER_NATIVE) { |
426 |
|
char* cval = reinterpret_cast<char*>(&val); |
427 |
|
// this will alter val!! |
428 |
|
byte_swap32(cval); |
429 |
|
} |
430 |
|
if (!std::isnan(val)) { |
431 |
|
for (int q=0; q<dpp; q++) { |
432 |
|
*dest++ = static_cast<double>(val); |
433 |
|
} |
434 |
|
} |
435 |
|
} |
436 |
|
} |
437 |
|
} |
438 |
|
} |
439 |
|
} |
440 |
|
|
441 |
|
f.close(); |
442 |
|
} |
443 |
|
|
444 |
|
template<typename ValueType> |
445 |
|
void Rectangle::readBinaryGridZippedImpl(escript::Data& out, const string& filename, |
446 |
|
const ReaderParameters& params) const |
447 |
|
{ |
448 |
|
// check destination function space |
449 |
|
int myN0, myN1; |
450 |
|
if (out.getFunctionSpace().getTypeCode() == Nodes) { |
451 |
|
myN0 = m_NN[0]; |
452 |
|
myN1 = m_NN[1]; |
453 |
|
} else if (out.getFunctionSpace().getTypeCode() == Elements || |
454 |
|
out.getFunctionSpace().getTypeCode() == ReducedElements) { |
455 |
|
myN0 = m_NE[0]; |
456 |
|
myN1 = m_NE[1]; |
457 |
|
} else |
458 |
|
throw RipleyException("readBinaryGrid(): invalid function space for output data object"); |
459 |
|
|
460 |
|
// check file existence and size |
461 |
|
ifstream f(filename.c_str(), ifstream::binary); |
462 |
|
if (f.fail()) { |
463 |
|
throw RipleyException("readBinaryGridFromZipped(): cannot open file"); |
464 |
|
} |
465 |
|
f.seekg(0, ios::end); |
466 |
|
const int numComp = out.getDataPointSize(); |
467 |
|
int filesize = f.tellg(); |
468 |
|
f.seekg(0, ios::beg); |
469 |
|
std::vector<char> compressed(filesize); |
470 |
|
f.read((char*)&compressed[0], filesize); |
471 |
|
f.close(); |
472 |
|
std::vector<char> decompressed = unzip(compressed); |
473 |
|
filesize = decompressed.size(); |
474 |
|
const int reqsize = params.numValues[0]*params.numValues[1]*numComp*sizeof(ValueType); |
475 |
|
if (filesize < reqsize) { |
476 |
|
throw RipleyException("readBinaryGridFromZipped(): not enough data in file"); |
477 |
|
} |
478 |
|
|
479 |
|
// check if this rank contributes anything |
480 |
|
if (params.first[0] >= m_offset[0]+myN0 || |
481 |
|
params.first[0]+params.numValues[0] <= m_offset[0] || |
482 |
|
params.first[1] >= m_offset[1]+myN1 || |
483 |
|
params.first[1]+params.numValues[1] <= m_offset[1]) { |
484 |
|
f.close(); |
485 |
|
return; |
486 |
|
} |
487 |
|
|
488 |
|
// now determine how much this rank has to write |
489 |
|
|
490 |
|
// first coordinates in data object to write to |
491 |
|
const int first0 = max(0, params.first[0]-m_offset[0]); |
492 |
|
const int first1 = max(0, params.first[1]-m_offset[1]); |
493 |
|
// indices to first value in file |
494 |
|
const int idx0 = max(0, m_offset[0]-params.first[0]); |
495 |
|
const int idx1 = max(0, m_offset[1]-params.first[1]); |
496 |
|
// number of values to read |
497 |
|
const int num0 = min(params.numValues[0]-idx0, myN0-first0); |
498 |
|
const int num1 = min(params.numValues[1]-idx1, myN1-first1); |
499 |
|
|
500 |
|
out.requireWrite(); |
501 |
|
vector<ValueType> values(num0*numComp); |
502 |
|
const int dpp = out.getNumDataPointsPerSample(); |
503 |
|
|
504 |
|
for (int y=0; y<num1; y++) { |
505 |
|
const int fileofs = numComp*(idx0+(idx1+y)*params.numValues[0]); |
506 |
|
memcpy((char*)&values[0], (char*)&decompressed[fileofs*sizeof(ValueType)], num0*numComp*sizeof(ValueType)); |
507 |
|
for (int x=0; x<num0; x++) { |
508 |
|
const int baseIndex = first0+x*params.multiplier[0] |
509 |
|
+(first1+y*params.multiplier[1])*myN0; |
510 |
|
for (int m1=0; m1<params.multiplier[1]; m1++) { |
511 |
|
for (int m0=0; m0<params.multiplier[0]; m0++) { |
512 |
|
const int dataIndex = baseIndex+m0+m1*myN0; |
513 |
|
double* dest = out.getSampleDataRW(dataIndex); |
514 |
|
for (int c=0; c<numComp; c++) { |
515 |
|
ValueType val = values[x*numComp+c]; |
516 |
|
|
517 |
|
if (params.byteOrder != BYTEORDER_NATIVE) { |
518 |
|
char* cval = reinterpret_cast<char*>(&val); |
519 |
|
// this will alter val!! |
520 |
|
byte_swap32(cval); |
521 |
|
} |
522 |
|
if (!std::isnan(val)) { |
523 |
|
for (int q=0; q<dpp; q++) { |
524 |
|
*dest++ = static_cast<double>(val); |
525 |
|
} |
526 |
|
} |
527 |
|
} |
528 |
|
} |
529 |
|
} |
530 |
|
} |
531 |
|
} |
532 |
|
|
533 |
|
f.close(); |
534 |
|
} |
535 |
|
|
536 |
|
void Rectangle::writeBinaryGrid(const escript::Data& in, string filename, |
537 |
|
int byteOrder, int dataType) const |
538 |
|
{ |
539 |
|
// the mapping is not universally correct but should work on our |
540 |
|
// supported platforms |
541 |
|
switch (dataType) { |
542 |
|
case DATATYPE_INT32: |
543 |
|
writeBinaryGridImpl<int>(in, filename, byteOrder); |
544 |
|
break; |
545 |
|
case DATATYPE_FLOAT32: |
546 |
|
writeBinaryGridImpl<float>(in, filename, byteOrder); |
547 |
|
break; |
548 |
|
case DATATYPE_FLOAT64: |
549 |
|
writeBinaryGridImpl<double>(in, filename, byteOrder); |
550 |
|
break; |
551 |
|
default: |
552 |
|
throw RipleyException("writeBinaryGrid(): invalid or unsupported datatype"); |
553 |
|
} |
554 |
|
} |
555 |
|
|
556 |
|
template<typename ValueType> |
557 |
|
void Rectangle::writeBinaryGridImpl(const escript::Data& in, |
558 |
|
const string& filename, int byteOrder) const |
559 |
|
{ |
560 |
|
// check function space and determine number of points |
561 |
|
int myN0, myN1; |
562 |
|
int totalN0, totalN1; |
563 |
|
if (in.getFunctionSpace().getTypeCode() == Nodes) { |
564 |
|
myN0 = m_NN[0]; |
565 |
|
myN1 = m_NN[1]; |
566 |
|
totalN0 = m_gNE[0]+1; |
567 |
|
totalN1 = m_gNE[1]+1; |
568 |
|
} else if (in.getFunctionSpace().getTypeCode() == Elements || |
569 |
|
in.getFunctionSpace().getTypeCode() == ReducedElements) { |
570 |
|
myN0 = m_NE[0]; |
571 |
|
myN1 = m_NE[1]; |
572 |
|
totalN0 = m_gNE[0]; |
573 |
|
totalN1 = m_gNE[1]; |
574 |
|
} else |
575 |
|
throw RipleyException("writeBinaryGrid(): invalid function space of data object"); |
576 |
|
|
577 |
|
const int numComp = in.getDataPointSize(); |
578 |
|
const int dpp = in.getNumDataPointsPerSample(); |
579 |
|
|
580 |
|
if (numComp > 1 || dpp > 1) |
581 |
|
throw RipleyException("writeBinaryGrid(): only scalar, single-value data supported"); |
582 |
|
|
583 |
|
const int fileSize = sizeof(ValueType)*numComp*dpp*totalN0*totalN1; |
584 |
|
|
585 |
|
// from here on we know that each sample consists of one value |
586 |
|
FileWriter fw; |
587 |
|
fw.openFile(filename, fileSize); |
588 |
|
MPIBarrier(); |
589 |
|
|
590 |
|
for (index_t y=0; y<myN1; y++) { |
591 |
|
const int fileofs = (m_offset[0]+(m_offset[1]+y)*totalN0)*sizeof(ValueType); |
592 |
|
ostringstream oss; |
593 |
|
|
594 |
|
for (index_t x=0; x<myN0; x++) { |
595 |
|
const double* sample = in.getSampleDataRO(y*myN0+x); |
596 |
|
ValueType fvalue = static_cast<ValueType>(*sample); |
597 |
|
if (byteOrder == BYTEORDER_NATIVE) { |
598 |
|
oss.write((char*)&fvalue, sizeof(fvalue)); |
599 |
|
} else { |
600 |
|
char* value = reinterpret_cast<char*>(&fvalue); |
601 |
|
oss.write(byte_swap32(value), sizeof(fvalue)); |
602 |
|
} |
603 |
|
} |
604 |
|
fw.writeAt(oss, fileofs); |
605 |
|
} |
606 |
|
fw.close(); |
607 |
|
} |
608 |
|
|
609 |
void Rectangle::dump(const string& fileName) const |
void Rectangle::dump(const string& fileName) const |
610 |
{ |
{ |
611 |
#if USE_SILO |
#if USE_SILO |
614 |
fn+=".silo"; |
fn+=".silo"; |
615 |
} |
} |
616 |
|
|
|
const int NUM_SILO_FILES = 1; |
|
|
const char* blockDirFmt = "/block%04d"; |
|
617 |
int driver=DB_HDF5; |
int driver=DB_HDF5; |
|
string siloPath; |
|
618 |
DBfile* dbfile = NULL; |
DBfile* dbfile = NULL; |
619 |
|
const char* blockDirFmt = "/block%04d"; |
620 |
|
|
621 |
#ifdef ESYS_MPI |
#ifdef ESYS_MPI |
622 |
PMPIO_baton_t* baton = NULL; |
PMPIO_baton_t* baton = NULL; |
623 |
|
const int NUM_SILO_FILES = 1; |
624 |
#endif |
#endif |
625 |
|
|
626 |
if (m_mpiInfo->size > 1) { |
if (m_mpiInfo->size > 1) { |
636 |
PMPIO_DefaultClose, (void*)&driver); |
PMPIO_DefaultClose, (void*)&driver); |
637 |
} |
} |
638 |
if (baton) { |
if (baton) { |
639 |
char str[64]; |
char siloPath[64]; |
640 |
snprintf(str, 64, blockDirFmt, PMPIO_RankInGroup(baton, m_mpiInfo->rank)); |
snprintf(siloPath, 64, blockDirFmt, PMPIO_RankInGroup(baton, m_mpiInfo->rank)); |
641 |
siloPath = str; |
dbfile = (DBfile*) PMPIO_WaitForBaton(baton, fn.c_str(), siloPath); |
|
dbfile = (DBfile*) PMPIO_WaitForBaton(baton, fn.c_str(), siloPath.c_str()); |
|
642 |
} |
} |
643 |
#endif |
#endif |
644 |
} else { |
} else { |
650 |
dbfile = DBCreate(fn.c_str(), DB_CLOBBER, DB_LOCAL, |
dbfile = DBCreate(fn.c_str(), DB_CLOBBER, DB_LOCAL, |
651 |
getDescription().c_str(), driver); |
getDescription().c_str(), driver); |
652 |
} |
} |
653 |
|
char siloPath[64]; |
654 |
|
snprintf(siloPath, 64, blockDirFmt, 0); |
655 |
|
DBMkDir(dbfile, siloPath); |
656 |
|
DBSetDir(dbfile, siloPath); |
657 |
} |
} |
658 |
|
|
659 |
if (!dbfile) |
if (!dbfile) |
668 |
} |
} |
669 |
*/ |
*/ |
670 |
|
|
671 |
boost::scoped_ptr<double> x(new double[m_N0]); |
boost::scoped_ptr<double> x(new double[m_NN[0]]); |
672 |
boost::scoped_ptr<double> y(new double[m_N1]); |
boost::scoped_ptr<double> y(new double[m_NN[1]]); |
673 |
double* coords[2] = { x.get(), y.get() }; |
double* coords[2] = { x.get(), y.get() }; |
|
pair<double,double> xdx = getFirstCoordAndSpacing(0); |
|
|
pair<double,double> ydy = getFirstCoordAndSpacing(1); |
|
674 |
#pragma omp parallel |
#pragma omp parallel |
675 |
{ |
{ |
676 |
#pragma omp for |
#pragma omp for nowait |
677 |
for (dim_t i0 = 0; i0 < m_N0; i0++) { |
for (dim_t i0 = 0; i0 < m_NN[0]; i0++) { |
678 |
coords[0][i0]=xdx.first+i0*xdx.second; |
coords[0][i0]=getLocalCoordinate(i0, 0); |
679 |
} |
} |
680 |
#pragma omp for |
#pragma omp for nowait |
681 |
for (dim_t i1 = 0; i1 < m_N1; i1++) { |
for (dim_t i1 = 0; i1 < m_NN[1]; i1++) { |
682 |
coords[1][i1]=ydy.first+i1*ydy.second; |
coords[1][i1]=getLocalCoordinate(i1, 1); |
683 |
} |
} |
684 |
} |
} |
685 |
IndexVector dims = getNumNodesPerDim(); |
int* dims = const_cast<int*>(getNumNodesPerDim()); |
686 |
|
|
687 |
// write mesh |
// write mesh |
688 |
DBPutQuadmesh(dbfile, "mesh", NULL, coords, &dims[0], 2, DB_DOUBLE, |
DBPutQuadmesh(dbfile, "mesh", NULL, coords, dims, 2, DB_DOUBLE, |
689 |
DB_COLLINEAR, NULL); |
DB_COLLINEAR, NULL); |
690 |
|
|
691 |
// write node ids |
// write node ids |
692 |
DBPutQuadvar1(dbfile, "nodeId", "mesh", (void*)&m_nodeId[0], &dims[0], 2, |
DBPutQuadvar1(dbfile, "nodeId", "mesh", (void*)&m_nodeId[0], dims, 2, |
693 |
NULL, 0, DB_INT, DB_NODECENT, NULL); |
NULL, 0, DB_INT, DB_NODECENT, NULL); |
694 |
|
|
695 |
// write element ids |
// write element ids |
696 |
dims = getNumElementsPerDim(); |
dims = const_cast<int*>(getNumElementsPerDim()); |
697 |
DBPutQuadvar1(dbfile, "elementId", "mesh", (void*)&m_elementId[0], |
DBPutQuadvar1(dbfile, "elementId", "mesh", (void*)&m_elementId[0], |
698 |
&dims[0], 2, NULL, 0, DB_INT, DB_ZONECENT, NULL); |
dims, 2, NULL, 0, DB_INT, DB_ZONECENT, NULL); |
699 |
|
|
700 |
// rank 0 writes multimesh and multivar |
// rank 0 writes multimesh and multivar |
701 |
if (m_mpiInfo->rank == 0) { |
if (m_mpiInfo->rank == 0) { |
744 |
} |
} |
745 |
|
|
746 |
#else // USE_SILO |
#else // USE_SILO |
747 |
throw RipleyException("dump(): no Silo support"); |
throw RipleyException("dump: no Silo support"); |
748 |
#endif |
#endif |
749 |
} |
} |
750 |
|
|
752 |
{ |
{ |
753 |
switch (fsType) { |
switch (fsType) { |
754 |
case Nodes: |
case Nodes: |
755 |
|
case ReducedNodes: // FIXME: reduced |
756 |
return &m_nodeId[0]; |
return &m_nodeId[0]; |
757 |
|
case DegreesOfFreedom: |
758 |
|
case ReducedDegreesOfFreedom: // FIXME: reduced |
759 |
|
return &m_dofId[0]; |
760 |
case Elements: |
case Elements: |
761 |
|
case ReducedElements: |
762 |
return &m_elementId[0]; |
return &m_elementId[0]; |
763 |
case FaceElements: |
case FaceElements: |
764 |
|
case ReducedFaceElements: |
765 |
return &m_faceId[0]; |
return &m_faceId[0]; |
766 |
|
case Points: |
767 |
|
return &m_diracPointNodeIDs[0]; |
768 |
default: |
default: |
769 |
break; |
break; |
770 |
} |
} |
771 |
|
|
772 |
stringstream msg; |
stringstream msg; |
773 |
msg << "borrowSampleReferenceIDs() not implemented for function space type " |
msg << "borrowSampleReferenceIDs: invalid function space type " << fsType; |
|
<< fsType; |
|
774 |
throw RipleyException(msg.str()); |
throw RipleyException(msg.str()); |
775 |
} |
} |
776 |
|
|
777 |
bool Rectangle::ownSample(int fsCode, index_t id) const |
bool Rectangle::ownSample(int fsType, index_t id) const |
778 |
{ |
{ |
779 |
#ifdef ESYS_MPI |
if (getMPISize()==1) |
780 |
if (fsCode == Nodes) { |
return true; |
781 |
const index_t myFirst=getNumNodes()*m_mpiInfo->rank; |
|
782 |
const index_t myLast=getNumNodes()*(m_mpiInfo->rank+1)-1; |
switch (fsType) { |
783 |
return (m_nodeId[id]>=myFirst && m_nodeId[id]<=myLast); |
case Nodes: |
784 |
} else |
case ReducedNodes: // FIXME: reduced |
785 |
throw RipleyException("ownSample() only implemented for Nodes"); |
return (m_dofMap[id] < getNumDOF()); |
786 |
#else |
case DegreesOfFreedom: |
787 |
return true; |
case ReducedDegreesOfFreedom: |
788 |
#endif |
return true; |
789 |
|
case Elements: |
790 |
|
case ReducedElements: |
791 |
|
// check ownership of element's bottom left node |
792 |
|
return (m_dofMap[id%m_NE[0]+m_NN[0]*(id/m_NE[0])] < getNumDOF()); |
793 |
|
case FaceElements: |
794 |
|
case ReducedFaceElements: |
795 |
|
{ |
796 |
|
// determine which face the sample belongs to before |
797 |
|
// checking ownership of corresponding element's first node |
798 |
|
dim_t n=0; |
799 |
|
for (size_t i=0; i<4; i++) { |
800 |
|
n+=m_faceCount[i]; |
801 |
|
if (id<n) { |
802 |
|
index_t k; |
803 |
|
if (i==1) |
804 |
|
k=m_NN[0]-2; |
805 |
|
else if (i==3) |
806 |
|
k=m_NN[0]*(m_NN[1]-2); |
807 |
|
else |
808 |
|
k=0; |
809 |
|
// determine whether to move right or up |
810 |
|
const index_t delta=(i/2==0 ? m_NN[0] : 1); |
811 |
|
return (m_dofMap[k+(id-n+m_faceCount[i])*delta] < getNumDOF()); |
812 |
|
} |
813 |
|
} |
814 |
|
return false; |
815 |
|
} |
816 |
|
default: |
817 |
|
break; |
818 |
|
} |
819 |
|
|
820 |
|
stringstream msg; |
821 |
|
msg << "ownSample: invalid function space type " << fsType; |
822 |
|
throw RipleyException(msg.str()); |
823 |
} |
} |
824 |
|
|
825 |
void Rectangle::interpolateOnDomain(escript::Data& target, |
void Rectangle::setToNormal(escript::Data& out) const |
|
const escript::Data& in) const |
|
826 |
{ |
{ |
827 |
const Rectangle& inDomain=dynamic_cast<const Rectangle&>(*(in.getFunctionSpace().getDomain())); |
if (out.getFunctionSpace().getTypeCode() == FaceElements) { |
828 |
const Rectangle& targetDomain=dynamic_cast<const Rectangle&>(*(target.getFunctionSpace().getDomain())); |
out.requireWrite(); |
829 |
if (inDomain != *this) |
#pragma omp parallel |
830 |
throw RipleyException("Illegal domain of interpolant"); |
{ |
831 |
if (targetDomain != *this) |
if (m_faceOffset[0] > -1) { |
832 |
throw RipleyException("Illegal domain of interpolation target"); |
#pragma omp for nowait |
833 |
|
for (index_t k1 = 0; k1 < m_NE[1]; ++k1) { |
834 |
|
double* o = out.getSampleDataRW(m_faceOffset[0]+k1); |
835 |
|
// set vector at two quadrature points |
836 |
|
*o++ = -1.; |
837 |
|
*o++ = 0.; |
838 |
|
*o++ = -1.; |
839 |
|
*o = 0.; |
840 |
|
} |
841 |
|
} |
842 |
|
|
843 |
stringstream msg; |
if (m_faceOffset[1] > -1) { |
844 |
msg << "interpolateOnDomain() not implemented for function space " |
#pragma omp for nowait |
845 |
<< in.getFunctionSpace().getTypeCode() << " -> " |
for (index_t k1 = 0; k1 < m_NE[1]; ++k1) { |
846 |
<< target.getFunctionSpace().getTypeCode(); |
double* o = out.getSampleDataRW(m_faceOffset[1]+k1); |
847 |
|
// set vector at two quadrature points |
848 |
|
*o++ = 1.; |
849 |
|
*o++ = 0.; |
850 |
|
*o++ = 1.; |
851 |
|
*o = 0.; |
852 |
|
} |
853 |
|
} |
854 |
|
|
855 |
switch (in.getFunctionSpace().getTypeCode()) { |
if (m_faceOffset[2] > -1) { |
856 |
case Nodes: |
#pragma omp for nowait |
857 |
case DegreesOfFreedom: |
for (index_t k0 = 0; k0 < m_NE[0]; ++k0) { |
858 |
switch (target.getFunctionSpace().getTypeCode()) { |
double* o = out.getSampleDataRW(m_faceOffset[2]+k0); |
859 |
case Elements: |
// set vector at two quadrature points |
860 |
{ |
*o++ = 0.; |
861 |
const double tmp0_2 = 0.62200846792814621559; |
*o++ = -1.; |
862 |
const double tmp0_1 = 0.044658198738520451079; |
*o++ = 0.; |
863 |
const double tmp0_0 = 0.16666666666666666667; |
*o = -1.; |
864 |
const dim_t numComp = in.getDataPointSize(); |
} |
|
escript::Data* inn=const_cast<escript::Data*>(&in); |
|
|
#pragma omp parallel for |
|
|
for (index_t k1=0; k1 < m_NE1; ++k1) { |
|
|
for (index_t k0=0; k0 < m_NE0; ++k0) { |
|
|
const register double* f_10 = inn->getSampleDataRO(INDEX2(k0+1,k1, m_N0)); |
|
|
const register double* f_11 = inn->getSampleDataRO(INDEX2(k0+1,k1+1, m_N0)); |
|
|
const register double* f_01 = inn->getSampleDataRO(INDEX2(k0,k1+1, m_N0)); |
|
|
const register double* f_00 = inn->getSampleDataRO(INDEX2(k0,k1, m_N0)); |
|
|
double* o = target.getSampleDataRW(INDEX2(k0,k1,m_NE0)); |
|
|
for (index_t i=0; i < numComp; ++i) { |
|
|
o[INDEX2(i,numComp,0)] = f_00[i]*tmp0_2 + f_11[i]*tmp0_1 + tmp0_0*(f_01[i] + f_10[i]); |
|
|
o[INDEX2(i,numComp,1)] = f_01[i]*tmp0_1 + f_10[i]*tmp0_2 + tmp0_0*(f_00[i] + f_11[i]); |
|
|
o[INDEX2(i,numComp,2)] = f_01[i]*tmp0_2 + f_10[i]*tmp0_1 + tmp0_0*(f_00[i] + f_11[i]); |
|
|
o[INDEX2(i,numComp,3)] = f_00[i]*tmp0_1 + f_11[i]*tmp0_2 + tmp0_0*(f_01[i] + f_10[i]); |
|
|
} // close component loop i |
|
|
} // close k0 loop |
|
|
} // close k1 loop |
|
|
break; |
|
|
} |
|
|
|
|
|
case DegreesOfFreedom: |
|
|
target=in; |
|
|
break; |
|
|
|
|
|
default: |
|
|
throw RipleyException(msg.str()); |
|
865 |
} |
} |
866 |
default: |
|
867 |
throw RipleyException(msg.str()); |
if (m_faceOffset[3] > -1) { |
868 |
|
#pragma omp for nowait |
869 |
|
for (index_t k0 = 0; k0 < m_NE[0]; ++k0) { |
870 |
|
double* o = out.getSampleDataRW(m_faceOffset[3]+k0); |
871 |
|
// set vector at two quadrature points |
872 |
|
*o++ = 0.; |
873 |
|
*o++ = 1.; |
874 |
|
*o++ = 0.; |
875 |
|
*o = 1.; |
876 |
|
} |
877 |
|
} |
878 |
|
} // end of parallel section |
879 |
|
} else if (out.getFunctionSpace().getTypeCode() == ReducedFaceElements) { |
880 |
|
out.requireWrite(); |
881 |
|
#pragma omp parallel |
882 |
|
{ |
883 |
|
if (m_faceOffset[0] > -1) { |
884 |
|
#pragma omp for nowait |
885 |
|
for (index_t k1 = 0; k1 < m_NE[1]; ++k1) { |
886 |
|
double* o = out.getSampleDataRW(m_faceOffset[0]+k1); |
887 |
|
*o++ = -1.; |
888 |
|
*o = 0.; |
889 |
|
} |
890 |
|
} |
891 |
|
|
892 |
|
if (m_faceOffset[1] > -1) { |
893 |
|
#pragma omp for nowait |
894 |
|
for (index_t k1 = 0; k1 < m_NE[1]; ++k1) { |
895 |
|
double* o = out.getSampleDataRW(m_faceOffset[1]+k1); |
896 |
|
*o++ = 1.; |
897 |
|
*o = 0.; |
898 |
|
} |
899 |
|
} |
900 |
|
|
901 |
|
if (m_faceOffset[2] > -1) { |
902 |
|
#pragma omp for nowait |
903 |
|
for (index_t k0 = 0; k0 < m_NE[0]; ++k0) { |
904 |
|
double* o = out.getSampleDataRW(m_faceOffset[2]+k0); |
905 |
|
*o++ = 0.; |
906 |
|
*o = -1.; |
907 |
|
} |
908 |
|
} |
909 |
|
|
910 |
|
if (m_faceOffset[3] > -1) { |
911 |
|
#pragma omp for nowait |
912 |
|
for (index_t k0 = 0; k0 < m_NE[0]; ++k0) { |
913 |
|
double* o = out.getSampleDataRW(m_faceOffset[3]+k0); |
914 |
|
*o++ = 0.; |
915 |
|
*o = 1.; |
916 |
|
} |
917 |
|
} |
918 |
|
} // end of parallel section |
919 |
|
|
920 |
|
} else { |
921 |
|
stringstream msg; |
922 |
|
msg << "setToNormal: invalid function space type " |
923 |
|
<< out.getFunctionSpace().getTypeCode(); |
924 |
|
throw RipleyException(msg.str()); |
925 |
} |
} |
926 |
} |
} |
927 |
|
|
928 |
Paso_SystemMatrixPattern* Rectangle::getPattern(bool reducedRowOrder, |
void Rectangle::setToSize(escript::Data& out) const |
|
bool reducedColOrder) const |
|
929 |
{ |
{ |
930 |
if (reducedRowOrder || reducedColOrder) |
if (out.getFunctionSpace().getTypeCode() == Elements |
931 |
throw RipleyException("getPattern() not implemented for reduced order"); |
|| out.getFunctionSpace().getTypeCode() == ReducedElements) { |
932 |
|
out.requireWrite(); |
933 |
|
const dim_t numQuad=out.getNumDataPointsPerSample(); |
934 |
|
const double size=sqrt(m_dx[0]*m_dx[0]+m_dx[1]*m_dx[1]); |
935 |
|
#pragma omp parallel for |
936 |
|
for (index_t k = 0; k < getNumElements(); ++k) { |
937 |
|
double* o = out.getSampleDataRW(k); |
938 |
|
fill(o, o+numQuad, size); |
939 |
|
} |
940 |
|
} else if (out.getFunctionSpace().getTypeCode() == FaceElements |
941 |
|
|| out.getFunctionSpace().getTypeCode() == ReducedFaceElements) { |
942 |
|
out.requireWrite(); |
943 |
|
const dim_t numQuad=out.getNumDataPointsPerSample(); |
944 |
|
#pragma omp parallel |
945 |
|
{ |
946 |
|
if (m_faceOffset[0] > -1) { |
947 |
|
#pragma omp for nowait |
948 |
|
for (index_t k1 = 0; k1 < m_NE[1]; ++k1) { |
949 |
|
double* o = out.getSampleDataRW(m_faceOffset[0]+k1); |
950 |
|
fill(o, o+numQuad, m_dx[1]); |
951 |
|
} |
952 |
|
} |
953 |
|
|
954 |
/* |
if (m_faceOffset[1] > -1) { |
955 |
// create distribution |
#pragma omp for nowait |
956 |
IndexVector dist; |
for (index_t k1 = 0; k1 < m_NE[1]; ++k1) { |
957 |
for (index_t i=0; i<m_mpiInfo->size+1; i++) |
double* o = out.getSampleDataRW(m_faceOffset[1]+k1); |
958 |
dist.push_back(i*getNumNodes()); |
fill(o, o+numQuad, m_dx[1]); |
959 |
Paso_Distribution* distribution = Paso_Distribution_alloc(m_mpiInfo, |
} |
960 |
&dist[0], 1, 0); |
} |
961 |
|
|
962 |
// connectors |
if (m_faceOffset[2] > -1) { |
963 |
dim_t numNeighbours = 0; |
#pragma omp for nowait |
964 |
RankVector neighbour(numNeighbours); |
for (index_t k0 = 0; k0 < m_NE[0]; ++k0) { |
965 |
IndexVector offsetInShared(numNeighbours+1); |
double* o = out.getSampleDataRW(m_faceOffset[2]+k0); |
966 |
IndexVector shared(offsetInShared[numNeighbours]); |
fill(o, o+numQuad, m_dx[0]); |
967 |
|
} |
968 |
|
} |
969 |
|
|
970 |
Paso_SharedComponents *snd_shcomp = Paso_SharedComponents_alloc( |
if (m_faceOffset[3] > -1) { |
971 |
getNumNodes(), numNeighbours, &neighbour[0], &shared[0], |
#pragma omp for nowait |
972 |
&offsetInShared[0], 1, 0, m_mpiInfo); |
for (index_t k0 = 0; k0 < m_NE[0]; ++k0) { |
973 |
Paso_SharedComponents *rcv_shcomp = Paso_SharedComponents_alloc( |
double* o = out.getSampleDataRW(m_faceOffset[3]+k0); |
974 |
getNumNodes(), numNeighbours, &neighbour[0], &shared[0], |
fill(o, o+numQuad, m_dx[0]); |
975 |
&offsetInShared[0], 1, 0, m_mpiInfo); |
} |
976 |
Paso_Connector* connector = Paso_Connector_alloc(snd_shcomp, rcv_shcomp); |
} |
977 |
|
} // end of parallel section |
978 |
|
|
979 |
// create patterns |
} else { |
980 |
dim_t M=0, N=0; |
stringstream msg; |
981 |
int* ptr=NULL; |
msg << "setToSize: invalid function space type " |
982 |
index_t* index=NULL; |
<< out.getFunctionSpace().getTypeCode(); |
983 |
Paso_Pattern *mainPattern = Paso_Pattern_alloc(MATRIX_FORMAT_DEFAULT, |
throw RipleyException(msg.str()); |
984 |
M, N, ptr, index); |
} |
|
Paso_Pattern *colCouplePattern = Paso_Pattern_alloc(MATRIX_FORMAT_DEFAULT, |
|
|
M, N, ptr, index); |
|
|
Paso_Pattern *rowCouplePattern = Paso_Pattern_alloc(MATRIX_FORMAT_DEFAULT, |
|
|
M, N, ptr, index); |
|
|
|
|
|
Paso_SystemMatrixPattern* pattern = Paso_SystemMatrixPattern_alloc( |
|
|
MATRIX_FORMAT_DEFAULT, distribution, distribution, |
|
|
mainPattern, colCouplePattern, rowCouplePattern, |
|
|
connector, connector); |
|
|
Paso_Pattern_free(mainPattern); |
|
|
Paso_Pattern_free(colCouplePattern); |
|
|
Paso_Pattern_free(rowCouplePattern); |
|
|
Paso_Distribution_free(distribution); |
|
|
Paso_SharedComponents_free(snd_shcomp); |
|
|
Paso_SharedComponents_free(rcv_shcomp); |
|
|
return pattern; |
|
|
*/ |
|
|
throw RipleyException("getPattern() not implemented"); |
|
985 |
} |
} |
986 |
|
|
987 |
void Rectangle::Print_Mesh_Info(const bool full) const |
void Rectangle::Print_Mesh_Info(const bool full) const |
991 |
cout << " Id Coordinates" << endl; |
cout << " Id Coordinates" << endl; |
992 |
cout.precision(15); |
cout.precision(15); |
993 |
cout.setf(ios::scientific, ios::floatfield); |
cout.setf(ios::scientific, ios::floatfield); |
|
pair<double,double> xdx = getFirstCoordAndSpacing(0); |
|
|
pair<double,double> ydy = getFirstCoordAndSpacing(1); |
|
994 |
for (index_t i=0; i < getNumNodes(); i++) { |
for (index_t i=0; i < getNumNodes(); i++) { |
995 |
cout << " " << setw(5) << m_nodeId[i] |
cout << " " << setw(5) << m_nodeId[i] |
996 |
<< " " << xdx.first+(i%m_N0)*xdx.second |
<< " " << getLocalCoordinate(i%m_NN[0], 0) |
997 |
<< " " << ydy.first+(i/m_N0)*ydy.second << endl; |
<< " " << getLocalCoordinate(i/m_NN[0], 1) << endl; |
998 |
} |
} |
999 |
} |
} |
1000 |
} |
} |
1001 |
|
|
1002 |
IndexVector Rectangle::getNumNodesPerDim() const |
|
1003 |
|
//protected |
1004 |
|
void Rectangle::assembleCoordinates(escript::Data& arg) const |
1005 |
{ |
{ |
1006 |
IndexVector ret; |
escriptDataC x = arg.getDataC(); |
1007 |
ret.push_back(m_N0); |
int numDim = m_numDim; |
1008 |
ret.push_back(m_N1); |
if (!isDataPointShapeEqual(&x, 1, &numDim)) |
1009 |
return ret; |
throw RipleyException("setToX: Invalid Data object shape"); |
1010 |
|
if (!numSamplesEqual(&x, 1, getNumNodes())) |
1011 |
|
throw RipleyException("setToX: Illegal number of samples in Data object"); |
1012 |
|
|
1013 |
|
arg.requireWrite(); |
1014 |
|
#pragma omp parallel for |
1015 |
|
for (dim_t i1 = 0; i1 < m_NN[1]; i1++) { |
1016 |
|
for (dim_t i0 = 0; i0 < m_NN[0]; i0++) { |
1017 |
|
double* point = arg.getSampleDataRW(i0+m_NN[0]*i1); |
1018 |
|
point[0] = getLocalCoordinate(i0, 0); |
1019 |
|
point[1] = getLocalCoordinate(i1, 1); |
1020 |
|
} |
1021 |
|
} |
1022 |
} |
} |
1023 |
|
|
1024 |
IndexVector Rectangle::getNumElementsPerDim() const |
//protected |
1025 |
|
void Rectangle::assembleGradient(escript::Data& out, const escript::Data& in) const |
1026 |
{ |
{ |
1027 |
IndexVector ret; |
const dim_t numComp = in.getDataPointSize(); |
1028 |
ret.push_back(m_NE0); |
const double cx0 = .21132486540518711775/m_dx[0]; |
1029 |
ret.push_back(m_NE1); |
const double cx1 = .78867513459481288225/m_dx[0]; |
1030 |
return ret; |
const double cx2 = 1./m_dx[0]; |
1031 |
|
const double cy0 = .21132486540518711775/m_dx[1]; |
1032 |
|
const double cy1 = .78867513459481288225/m_dx[1]; |
1033 |
|
const double cy2 = 1./m_dx[1]; |
1034 |
|
|
1035 |
|
if (out.getFunctionSpace().getTypeCode() == Elements) { |
1036 |
|
out.requireWrite(); |
1037 |
|
#pragma omp parallel |
1038 |
|
{ |
1039 |
|
vector<double> f_00(numComp); |
1040 |
|
vector<double> f_01(numComp); |
1041 |
|
vector<double> f_10(numComp); |
1042 |
|
vector<double> f_11(numComp); |
1043 |
|
#pragma omp for |
1044 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1045 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1046 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,k1, m_NN[0])), numComp*sizeof(double)); |
1047 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,k1+1, m_NN[0])), numComp*sizeof(double)); |
1048 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,k1, m_NN[0])), numComp*sizeof(double)); |
1049 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1050 |
|
double* o = out.getSampleDataRW(INDEX2(k0,k1,m_NE[0])); |
1051 |
|
for (index_t i=0; i < numComp; ++i) { |
1052 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_10[i]-f_00[i])*cx1 + (f_11[i]-f_01[i])*cx0; |
1053 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_01[i]-f_00[i])*cy1 + (f_11[i]-f_10[i])*cy0; |
1054 |
|
o[INDEX3(i,0,1,numComp,2)] = (f_10[i]-f_00[i])*cx1 + (f_11[i]-f_01[i])*cx0; |
1055 |
|
o[INDEX3(i,1,1,numComp,2)] = (f_01[i]-f_00[i])*cy0 + (f_11[i]-f_10[i])*cy1; |
1056 |
|
o[INDEX3(i,0,2,numComp,2)] = (f_10[i]-f_00[i])*cx0 + (f_11[i]-f_01[i])*cx1; |
1057 |
|
o[INDEX3(i,1,2,numComp,2)] = (f_01[i]-f_00[i])*cy1 + (f_11[i]-f_10[i])*cy0; |
1058 |
|
o[INDEX3(i,0,3,numComp,2)] = (f_10[i]-f_00[i])*cx0 + (f_11[i]-f_01[i])*cx1; |
1059 |
|
o[INDEX3(i,1,3,numComp,2)] = (f_01[i]-f_00[i])*cy0 + (f_11[i]-f_10[i])*cy1; |
1060 |
|
} // end of component loop i |
1061 |
|
} // end of k0 loop |
1062 |
|
} // end of k1 loop |
1063 |
|
} // end of parallel section |
1064 |
|
} else if (out.getFunctionSpace().getTypeCode() == ReducedElements) { |
1065 |
|
out.requireWrite(); |
1066 |
|
#pragma omp parallel |
1067 |
|
{ |
1068 |
|
vector<double> f_00(numComp); |
1069 |
|
vector<double> f_01(numComp); |
1070 |
|
vector<double> f_10(numComp); |
1071 |
|
vector<double> f_11(numComp); |
1072 |
|
#pragma omp for |
1073 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1074 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1075 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,k1, m_NN[0])), numComp*sizeof(double)); |
1076 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,k1+1, m_NN[0])), numComp*sizeof(double)); |
1077 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,k1, m_NN[0])), numComp*sizeof(double)); |
1078 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1079 |
|
double* o = out.getSampleDataRW(INDEX2(k0,k1,m_NE[0])); |
1080 |
|
for (index_t i=0; i < numComp; ++i) { |
1081 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_10[i] + f_11[i] - f_00[i] - f_01[i])*cx2/2; |
1082 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_01[i] + f_11[i] - f_00[i] - f_10[i])*cy2/2; |
1083 |
|
} // end of component loop i |
1084 |
|
} // end of k0 loop |
1085 |
|
} // end of k1 loop |
1086 |
|
} // end of parallel section |
1087 |
|
} else if (out.getFunctionSpace().getTypeCode() == FaceElements) { |
1088 |
|
out.requireWrite(); |
1089 |
|
#pragma omp parallel |
1090 |
|
{ |
1091 |
|
vector<double> f_00(numComp); |
1092 |
|
vector<double> f_01(numComp); |
1093 |
|
vector<double> f_10(numComp); |
1094 |
|
vector<double> f_11(numComp); |
1095 |
|
if (m_faceOffset[0] > -1) { |
1096 |
|
#pragma omp for nowait |
1097 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1098 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(0,k1, m_NN[0])), numComp*sizeof(double)); |
1099 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(0,k1+1, m_NN[0])), numComp*sizeof(double)); |
1100 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(1,k1, m_NN[0])), numComp*sizeof(double)); |
1101 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1102 |
|
double* o = out.getSampleDataRW(m_faceOffset[0]+k1); |
1103 |
|
for (index_t i=0; i < numComp; ++i) { |
1104 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_10[i]-f_00[i])*cx1 + (f_11[i]-f_01[i])*cx0; |
1105 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_01[i]-f_00[i])*cy2; |
1106 |
|
o[INDEX3(i,0,1,numComp,2)] = (f_10[i]-f_00[i])*cx0 + (f_11[i]-f_01[i])*cx1; |
1107 |
|
o[INDEX3(i,1,1,numComp,2)] = (f_01[i]-f_00[i])*cy2; |
1108 |
|
} // end of component loop i |
1109 |
|
} // end of k1 loop |
1110 |
|
} // end of face 0 |
1111 |
|
if (m_faceOffset[1] > -1) { |
1112 |
|
#pragma omp for nowait |
1113 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1114 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(m_NN[0]-2,k1, m_NN[0])), numComp*sizeof(double)); |
1115 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(m_NN[0]-2,k1+1, m_NN[0])), numComp*sizeof(double)); |
1116 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(m_NN[0]-1,k1, m_NN[0])), numComp*sizeof(double)); |
1117 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(m_NN[0]-1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1118 |
|
double* o = out.getSampleDataRW(m_faceOffset[1]+k1); |
1119 |
|
for (index_t i=0; i < numComp; ++i) { |
1120 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_10[i]-f_00[i])*cx1 + (f_11[i]-f_01[i])*cx0; |
1121 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_11[i]-f_10[i])*cy2; |
1122 |
|
o[INDEX3(i,0,1,numComp,2)] = (f_10[i]-f_00[i])*cx0 + (f_11[i]-f_01[i])*cx1; |
1123 |
|
o[INDEX3(i,1,1,numComp,2)] = (f_11[i]-f_10[i])*cy2; |
1124 |
|
} // end of component loop i |
1125 |
|
} // end of k1 loop |
1126 |
|
} // end of face 1 |
1127 |
|
if (m_faceOffset[2] > -1) { |
1128 |
|
#pragma omp for nowait |
1129 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1130 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,0, m_NN[0])), numComp*sizeof(double)); |
1131 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,1, m_NN[0])), numComp*sizeof(double)); |
1132 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,0, m_NN[0])), numComp*sizeof(double)); |
1133 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,1, m_NN[0])), numComp*sizeof(double)); |
1134 |
|
double* o = out.getSampleDataRW(m_faceOffset[2]+k0); |
1135 |
|
for (index_t i=0; i < numComp; ++i) { |
1136 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_10[i]-f_00[i])*cx2; |
1137 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_01[i]-f_00[i])*cy1 + (f_11[i]-f_10[i])*cy0; |
1138 |
|
o[INDEX3(i,0,1,numComp,2)] = (f_10[i]-f_00[i])*cx2; |
1139 |
|
o[INDEX3(i,1,1,numComp,2)] = (f_01[i]-f_00[i])*cy0 + (f_11[i]-f_10[i])*cy1; |
1140 |
|
} // end of component loop i |
1141 |
|
} // end of k0 loop |
1142 |
|
} // end of face 2 |
1143 |
|
if (m_faceOffset[3] > -1) { |
1144 |
|
#pragma omp for nowait |
1145 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1146 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,m_NN[1]-2, m_NN[0])), numComp*sizeof(double)); |
1147 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,m_NN[1]-1, m_NN[0])), numComp*sizeof(double)); |
1148 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,m_NN[1]-2, m_NN[0])), numComp*sizeof(double)); |
1149 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,m_NN[1]-1, m_NN[0])), numComp*sizeof(double)); |
1150 |
|
double* o = out.getSampleDataRW(m_faceOffset[3]+k0); |
1151 |
|
for (index_t i=0; i < numComp; ++i) { |
1152 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_11[i]-f_01[i])*cx2; |
1153 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_01[i]-f_00[i])*cy1 + (f_11[i]-f_10[i])*cy0; |
1154 |
|
o[INDEX3(i,0,1,numComp,2)] = (f_11[i]-f_01[i])*cx2; |
1155 |
|
o[INDEX3(i,1,1,numComp,2)] = (f_01[i]-f_00[i])*cy0 + (f_11[i]-f_10[i])*cy1; |
1156 |
|
} // end of component loop i |
1157 |
|
} // end of k0 loop |
1158 |
|
} // end of face 3 |
1159 |
|
} // end of parallel section |
1160 |
|
|
1161 |
|
} else if (out.getFunctionSpace().getTypeCode() == ReducedFaceElements) { |
1162 |
|
out.requireWrite(); |
1163 |
|
#pragma omp parallel |
1164 |
|
{ |
1165 |
|
vector<double> f_00(numComp); |
1166 |
|
vector<double> f_01(numComp); |
1167 |
|
vector<double> f_10(numComp); |
1168 |
|
vector<double> f_11(numComp); |
1169 |
|
if (m_faceOffset[0] > -1) { |
1170 |
|
#pragma omp for nowait |
1171 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1172 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(0,k1, m_NN[0])), numComp*sizeof(double)); |
1173 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(0,k1+1, m_NN[0])), numComp*sizeof(double)); |
1174 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(1,k1, m_NN[0])), numComp*sizeof(double)); |
1175 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1176 |
|
double* o = out.getSampleDataRW(m_faceOffset[0]+k1); |
1177 |
|
for (index_t i=0; i < numComp; ++i) { |
1178 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_10[i] + f_11[i] - f_00[i] - f_01[i])*cx2/2; |
1179 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_01[i]-f_00[i])*cy2; |
1180 |
|
} // end of component loop i |
1181 |
|
} // end of k1 loop |
1182 |
|
} // end of face 0 |
1183 |
|
if (m_faceOffset[1] > -1) { |
1184 |
|
#pragma omp for nowait |
1185 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1186 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(m_NN[0]-2,k1, m_NN[0])), numComp*sizeof(double)); |
1187 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(m_NN[0]-2,k1+1, m_NN[0])), numComp*sizeof(double)); |
1188 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(m_NN[0]-1,k1, m_NN[0])), numComp*sizeof(double)); |
1189 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(m_NN[0]-1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1190 |
|
double* o = out.getSampleDataRW(m_faceOffset[1]+k1); |
1191 |
|
for (index_t i=0; i < numComp; ++i) { |
1192 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_10[i] + f_11[i] - f_00[i] - f_01[i])*cx2/2; |
1193 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_11[i]-f_10[i])*cy2; |
1194 |
|
} // end of component loop i |
1195 |
|
} // end of k1 loop |
1196 |
|
} // end of face 1 |
1197 |
|
if (m_faceOffset[2] > -1) { |
1198 |
|
#pragma omp for nowait |
1199 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1200 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,0, m_NN[0])), numComp*sizeof(double)); |
1201 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,1, m_NN[0])), numComp*sizeof(double)); |
1202 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,0, m_NN[0])), numComp*sizeof(double)); |
1203 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,1, m_NN[0])), numComp*sizeof(double)); |
1204 |
|
double* o = out.getSampleDataRW(m_faceOffset[2]+k0); |
1205 |
|
for (index_t i=0; i < numComp; ++i) { |
1206 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_10[i]-f_00[i])*cx2; |
1207 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_01[i] + f_11[i] - f_00[i] - f_10[i])*cy2/2; |
1208 |
|
} // end of component loop i |
1209 |
|
} // end of k0 loop |
1210 |
|
} // end of face 2 |
1211 |
|
if (m_faceOffset[3] > -1) { |
1212 |
|
#pragma omp for nowait |
1213 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1214 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,m_NN[1]-2, m_NN[0])), numComp*sizeof(double)); |
1215 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,m_NN[1]-1, m_NN[0])), numComp*sizeof(double)); |
1216 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,m_NN[1]-2, m_NN[0])), numComp*sizeof(double)); |
1217 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,m_NN[1]-1, m_NN[0])), numComp*sizeof(double)); |
1218 |
|
double* o = out.getSampleDataRW(m_faceOffset[3]+k0); |
1219 |
|
for (index_t i=0; i < numComp; ++i) { |
1220 |
|
o[INDEX3(i,0,0,numComp,2)] = (f_11[i]-f_01[i])*cx2; |
1221 |
|
o[INDEX3(i,1,0,numComp,2)] = (f_01[i] + f_11[i] - f_00[i] - f_10[i])*cy2/2; |
1222 |
|
} // end of component loop i |
1223 |
|
} // end of k0 loop |
1224 |
|
} // end of face 3 |
1225 |
|
} // end of parallel section |
1226 |
|
} |
1227 |
} |
} |
1228 |
|
|
1229 |
IndexVector Rectangle::getNumFacesPerBoundary() const |
//protected |
1230 |
|
void Rectangle::assembleIntegrate(vector<double>& integrals, |
1231 |
|
const escript::Data& arg) const |
1232 |
{ |
{ |
1233 |
IndexVector ret(4, 0); |
const dim_t numComp = arg.getDataPointSize(); |
1234 |
//left |
const index_t left = (m_offset[0]==0 ? 0 : 1); |
1235 |
if (m_offset0==0) |
const index_t bottom = (m_offset[1]==0 ? 0 : 1); |
1236 |
ret[0]=m_NE1; |
const int fs=arg.getFunctionSpace().getTypeCode(); |
1237 |
//right |
if (fs == Elements && arg.actsExpanded()) { |
1238 |
if (m_mpiInfo->rank%m_NX==m_NX-1) |
#pragma omp parallel |
1239 |
ret[1]=m_NE1; |
{ |
1240 |
//bottom |
vector<double> int_local(numComp, 0); |
1241 |
if (m_offset1==0) |
const double w = m_dx[0]*m_dx[1]/4.; |
1242 |
ret[2]=m_NE0; |
#pragma omp for nowait |
1243 |
//top |
for (index_t k1 = bottom; k1 < bottom+m_ownNE[1]; ++k1) { |
1244 |
if (m_mpiInfo->rank/m_NX==m_NY-1) |
for (index_t k0 = left; k0 < left+m_ownNE[0]; ++k0) { |
1245 |
ret[3]=m_NE0; |
const double* f = arg.getSampleDataRO(INDEX2(k0, k1, m_NE[0])); |
1246 |
return ret; |
for (index_t i=0; i < numComp; ++i) { |
1247 |
|
const double f0 = f[INDEX2(i,0,numComp)]; |
1248 |
|
const double f1 = f[INDEX2(i,1,numComp)]; |
1249 |
|
const double f2 = f[INDEX2(i,2,numComp)]; |
1250 |
|
const double f3 = f[INDEX2(i,3,numComp)]; |
1251 |
|
int_local[i]+=(f0+f1+f2+f3)*w; |
1252 |
|
} // end of component loop i |
1253 |
|
} // end of k0 loop |
1254 |
|
} // end of k1 loop |
1255 |
|
#pragma omp critical |
1256 |
|
for (index_t i=0; i<numComp; i++) |
1257 |
|
integrals[i]+=int_local[i]; |
1258 |
|
} // end of parallel section |
1259 |
|
|
1260 |
|
} else if (fs==ReducedElements || (fs==Elements && !arg.actsExpanded())) { |
1261 |
|
const double w = m_dx[0]*m_dx[1]; |
1262 |
|
#pragma omp parallel |
1263 |
|
{ |
1264 |
|
vector<double> int_local(numComp, 0); |
1265 |
|
#pragma omp for nowait |
1266 |
|
for (index_t k1 = bottom; k1 < bottom+m_ownNE[1]; ++k1) { |
1267 |
|
for (index_t k0 = left; k0 < left+m_ownNE[0]; ++k0) { |
1268 |
|
const double* f = arg.getSampleDataRO(INDEX2(k0, k1, m_NE[0])); |
1269 |
|
for (index_t i=0; i < numComp; ++i) { |
1270 |
|
int_local[i]+=f[i]*w; |
1271 |
|
} |
1272 |
|
} |
1273 |
|
} |
1274 |
|
#pragma omp critical |
1275 |
|
for (index_t i=0; i<numComp; i++) |
1276 |
|
integrals[i]+=int_local[i]; |
1277 |
|
} // end of parallel section |
1278 |
|
|
1279 |
|
} else if (fs == FaceElements && arg.actsExpanded()) { |
1280 |
|
#pragma omp parallel |
1281 |
|
{ |
1282 |
|
vector<double> int_local(numComp, 0); |
1283 |
|
const double w0 = m_dx[0]/2.; |
1284 |
|
const double w1 = m_dx[1]/2.; |
1285 |
|
if (m_faceOffset[0] > -1) { |
1286 |
|
#pragma omp for nowait |
1287 |
|
for (index_t k1 = bottom; k1 < bottom+m_ownNE[1]; ++k1) { |
1288 |
|
const double* f = arg.getSampleDataRO(m_faceOffset[0]+k1); |
1289 |
|
for (index_t i=0; i < numComp; ++i) { |
1290 |
|
const double f0 = f[INDEX2(i,0,numComp)]; |
1291 |
|
const double f1 = f[INDEX2(i,1,numComp)]; |
1292 |
|
int_local[i]+=(f0+f1)*w1; |
1293 |
|
} // end of component loop i |
1294 |
|
} // end of k1 loop |
1295 |
|
} |
1296 |
|
|
1297 |
|
if (m_faceOffset[1] > -1) { |
1298 |
|
#pragma omp for nowait |
1299 |
|
for (index_t k1 = bottom; k1 < bottom+m_ownNE[1]; ++k1) { |
1300 |
|
const double* f = arg.getSampleDataRO(m_faceOffset[1]+k1); |
1301 |
|
for (index_t i=0; i < numComp; ++i) { |
1302 |
|
const double f0 = f[INDEX2(i,0,numComp)]; |
1303 |
|
const double f1 = f[INDEX2(i,1,numComp)]; |
1304 |
|
int_local[i]+=(f0+f1)*w1; |
1305 |
|
} // end of component loop i |
1306 |
|
} // end of k1 loop |
1307 |
|
} |
1308 |
|
|
1309 |
|
if (m_faceOffset[2] > -1) { |
1310 |
|
#pragma omp for nowait |
1311 |
|
for (index_t k0 = left; k0 < left+m_ownNE[0]; ++k0) { |
1312 |
|
const double* f = arg.getSampleDataRO(m_faceOffset[2]+k0); |
1313 |
|
for (index_t i=0; i < numComp; ++i) { |
1314 |
|
const double f0 = f[INDEX2(i,0,numComp)]; |
1315 |
|
const double f1 = f[INDEX2(i,1,numComp)]; |
1316 |
|
int_local[i]+=(f0+f1)*w0; |
1317 |
|
} // end of component loop i |
1318 |
|
} // end of k0 loop |
1319 |
|
} |
1320 |
|
|
1321 |
|
if (m_faceOffset[3] > -1) { |
1322 |
|
#pragma omp for nowait |
1323 |
|
for (index_t k0 = left; k0 < left+m_ownNE[0]; ++k0) { |
1324 |
|
const double* f = arg.getSampleDataRO(m_faceOffset[3]+k0); |
1325 |
|
for (index_t i=0; i < numComp; ++i) { |
1326 |
|
const double f0 = f[INDEX2(i,0,numComp)]; |
1327 |
|
const double f1 = f[INDEX2(i,1,numComp)]; |
1328 |
|
int_local[i]+=(f0+f1)*w0; |
1329 |
|
} // end of component loop i |
1330 |
|
} // end of k0 loop |
1331 |
|
} |
1332 |
|
#pragma omp critical |
1333 |
|
for (index_t i=0; i<numComp; i++) |
1334 |
|
integrals[i]+=int_local[i]; |
1335 |
|
} // end of parallel section |
1336 |
|
|
1337 |
|
} else if (fs==ReducedFaceElements || (fs==FaceElements && !arg.actsExpanded())) { |
1338 |
|
#pragma omp parallel |
1339 |
|
{ |
1340 |
|
vector<double> int_local(numComp, 0); |
1341 |
|
if (m_faceOffset[0] > -1) { |
1342 |
|
#pragma omp for nowait |
1343 |
|
for (index_t k1 = bottom; k1 < bottom+m_ownNE[1]; ++k1) { |
1344 |
|
const double* f = arg.getSampleDataRO(m_faceOffset[0]+k1); |
1345 |
|
for (index_t i=0; i < numComp; ++i) { |
1346 |
|
int_local[i]+=f[i]*m_dx[1]; |
1347 |
|
} |
1348 |
|
} |
1349 |
|
} |
1350 |
|
|
1351 |
|
if (m_faceOffset[1] > -1) { |
1352 |
|
#pragma omp for nowait |
1353 |
|
for (index_t k1 = bottom; k1 < bottom+m_ownNE[1]; ++k1) { |
1354 |
|
const double* f = arg.getSampleDataRO(m_faceOffset[1]+k1); |
1355 |
|
for (index_t i=0; i < numComp; ++i) { |
1356 |
|
int_local[i]+=f[i]*m_dx[1]; |
1357 |
|
} |
1358 |
|
} |
1359 |
|
} |
1360 |
|
|
1361 |
|
if (m_faceOffset[2] > -1) { |
1362 |
|
#pragma omp for nowait |
1363 |
|
for (index_t k0 = left; k0 < left+m_ownNE[0]; ++k0) { |
1364 |
|
const double* f = arg.getSampleDataRO(m_faceOffset[2]+k0); |
1365 |
|
for (index_t i=0; i < numComp; ++i) { |
1366 |
|
int_local[i]+=f[i]*m_dx[0]; |
1367 |
|
} |
1368 |
|
} |
1369 |
|
} |
1370 |
|
|
1371 |
|
if (m_faceOffset[3] > -1) { |
1372 |
|
#pragma omp for nowait |
1373 |
|
for (index_t k0 = left; k0 < left+m_ownNE[0]; ++k0) { |
1374 |
|
const double* f = arg.getSampleDataRO(m_faceOffset[3]+k0); |
1375 |
|
for (index_t i=0; i < numComp; ++i) { |
1376 |
|
int_local[i]+=f[i]*m_dx[0]; |
1377 |
|
} |
1378 |
|
} |
1379 |
|
} |
1380 |
|
|
1381 |
|
#pragma omp critical |
1382 |
|
for (index_t i=0; i<numComp; i++) |
1383 |
|
integrals[i]+=int_local[i]; |
1384 |
|
} // end of parallel section |
1385 |
|
} // function space selector |
1386 |
} |
} |
1387 |
|
|
1388 |
pair<double,double> Rectangle::getFirstCoordAndSpacing(dim_t dim) const |
//protected |
1389 |
|
dim_t Rectangle::insertNeighbourNodes(IndexVector& index, index_t node) const |
1390 |
{ |
{ |
1391 |
if (dim==0) { |
const dim_t nDOF0 = (m_gNE[0]+1)/m_NX[0]; |
1392 |
return pair<double,double>((m_l0*m_offset0)/m_gNE0, m_l0/m_gNE0); |
const dim_t nDOF1 = (m_gNE[1]+1)/m_NX[1]; |
1393 |
} else if (dim==1) { |
const int x=node%nDOF0; |
1394 |
return pair<double,double>((m_l1*m_offset1)/m_gNE1, m_l1/m_gNE1); |
const int y=node/nDOF0; |
1395 |
|
dim_t num=0; |
1396 |
|
// loop through potential neighbours and add to index if positions are |
1397 |
|
// within bounds |
1398 |
|
for (int i1=-1; i1<2; i1++) { |
1399 |
|
for (int i0=-1; i0<2; i0++) { |
1400 |
|
// skip node itself |
1401 |
|
if (i0==0 && i1==0) |
1402 |
|
continue; |
1403 |
|
// location of neighbour node |
1404 |
|
const int nx=x+i0; |
1405 |
|
const int ny=y+i1; |
1406 |
|
if (nx>=0 && ny>=0 && nx<nDOF0 && ny<nDOF1) { |
1407 |
|
index.push_back(ny*nDOF0+nx); |
1408 |
|
num++; |
1409 |
|
} |
1410 |
|
} |
1411 |
} |
} |
1412 |
throw RipleyException("getFirstCoordAndSpacing(): invalid argument"); |
|
1413 |
|
return num; |
1414 |
} |
} |
1415 |
|
|
1416 |
//protected |
//protected |
1417 |
dim_t Rectangle::getNumFaceElements() const |
void Rectangle::nodesToDOF(escript::Data& out, const escript::Data& in) const |
1418 |
{ |
{ |
1419 |
dim_t n=0; |
const dim_t numComp = in.getDataPointSize(); |
1420 |
//left |
out.requireWrite(); |
|
if (m_offset0==0) |
|
|
n+=m_NE1; |
|
|
//right |
|
|
if (m_mpiInfo->rank%m_NX==m_NX-1) |
|
|
n+=m_NE1; |
|
|
//bottom |
|
|
if (m_offset1==0) |
|
|
n+=m_NE0; |
|
|
//top |
|
|
if (m_mpiInfo->rank/m_NX==m_NY-1) |
|
|
n+=m_NE0; |
|
1421 |
|
|
1422 |
return n; |
const index_t left = (m_offset[0]==0 ? 0 : 1); |
1423 |
|
const index_t bottom = (m_offset[1]==0 ? 0 : 1); |
1424 |
|
const dim_t nDOF0 = (m_gNE[0]+1)/m_NX[0]; |
1425 |
|
const dim_t nDOF1 = (m_gNE[1]+1)/m_NX[1]; |
1426 |
|
#pragma omp parallel for |
1427 |
|
for (index_t i=0; i<nDOF1; i++) { |
1428 |
|
for (index_t j=0; j<nDOF0; j++) { |
1429 |
|
const index_t n=j+left+(i+bottom)*m_NN[0]; |
1430 |
|
const double* src=in.getSampleDataRO(n); |
1431 |
|
copy(src, src+numComp, out.getSampleDataRW(j+i*nDOF0)); |
1432 |
|
} |
1433 |
|
} |
1434 |
} |
} |
1435 |
|
|
1436 |
//protected |
//protected |
1437 |
void Rectangle::assembleCoordinates(escript::Data& arg) const |
void Rectangle::dofToNodes(escript::Data& out, const escript::Data& in) const |
1438 |
{ |
{ |
1439 |
escriptDataC x = arg.getDataC(); |
const dim_t numComp = in.getDataPointSize(); |
1440 |
int numDim = m_numDim; |
Paso_Coupler* coupler = Paso_Coupler_alloc(m_connector, numComp); |
1441 |
if (!isDataPointShapeEqual(&x, 1, &numDim)) |
// expand data object if necessary to be able to grab the whole data |
1442 |
throw RipleyException("setToX: Invalid Data object shape"); |
const_cast<escript::Data*>(&in)->expand(); |
1443 |
if (!numSamplesEqual(&x, 1, getNumNodes())) |
Paso_Coupler_startCollect(coupler, in.getSampleDataRO(0)); |
1444 |
throw RipleyException("setToX: Illegal number of samples in Data object"); |
|
1445 |
|
const dim_t numDOF = getNumDOF(); |
1446 |
|
out.requireWrite(); |
1447 |
|
const double* buffer = Paso_Coupler_finishCollect(coupler); |
1448 |
|
|
|
pair<double,double> xdx = getFirstCoordAndSpacing(0); |
|
|
pair<double,double> ydy = getFirstCoordAndSpacing(1); |
|
|
arg.requireWrite(); |
|
1449 |
#pragma omp parallel for |
#pragma omp parallel for |
1450 |
for (dim_t i1 = 0; i1 < m_N1; i1++) { |
for (index_t i=0; i<getNumNodes(); i++) { |
1451 |
for (dim_t i0 = 0; i0 < m_N0; i0++) { |
const double* src=(m_dofMap[i]<numDOF ? |
1452 |
double* point = arg.getSampleDataRW(i0+m_N0*i1); |
in.getSampleDataRO(m_dofMap[i]) |
1453 |
point[0] = xdx.first+i0*xdx.second; |
: &buffer[(m_dofMap[i]-numDOF)*numComp]); |
1454 |
point[1] = ydy.first+i1*ydy.second; |
copy(src, src+numComp, out.getSampleDataRW(i)); |
|
} |
|
1455 |
} |
} |
1456 |
|
Paso_Coupler_free(coupler); |
1457 |
} |
} |
1458 |
|
|
1459 |
//private |
//private |
1460 |
void Rectangle::populateSampleIds() |
void Rectangle::populateSampleIds() |
1461 |
{ |
{ |
1462 |
// identifiers are ordered from left to right, bottom to top on each rank, |
// degrees of freedom are numbered from left to right, bottom to top in |
1463 |
// except for the shared nodes which are owned by the rank below / to the |
// each rank, continuing on the next rank (ranks also go left-right, |
1464 |
// left of the current rank |
// bottom-top). |
1465 |
|
// This means rank 0 has id 0...n0-1, rank 1 has id n0...n1-1 etc. which |
1466 |
|
// helps when writing out data rank after rank. |
1467 |
|
|
1468 |
// build node distribution vector first. |
// build node distribution vector first. |
1469 |
// m_nodeDistribution[i] is the first node id on rank i, that is |
// rank i owns m_nodeDistribution[i+1]-nodeDistribution[i] nodes which is |
1470 |
// rank i owns m_nodeDistribution[i+1]-nodeDistribution[i] nodes |
// constant for all ranks in this implementation |
1471 |
m_nodeDistribution.assign(m_mpiInfo->size+1, 0); |
m_nodeDistribution.assign(m_mpiInfo->size+1, 0); |
1472 |
m_nodeDistribution[1]=getNumNodes(); |
const dim_t numDOF=getNumDOF(); |
1473 |
for (dim_t k=1; k<m_mpiInfo->size-1; k++) { |
for (dim_t k=1; k<m_mpiInfo->size; k++) { |
1474 |
const index_t x=k%m_NX; |
m_nodeDistribution[k]=k*numDOF; |
|
const index_t y=k/m_NX; |
|
|
index_t numNodes=getNumNodes(); |
|
|
if (x>0) |
|
|
numNodes-=m_N1; |
|
|
if (y>0) |
|
|
numNodes-=m_N0; |
|
|
if (x>0 && y>0) |
|
|
numNodes++; // subtracted corner twice -> fix that |
|
|
m_nodeDistribution[k+1]=m_nodeDistribution[k]+numNodes; |
|
1475 |
} |
} |
1476 |
m_nodeDistribution[m_mpiInfo->size]=getNumDataPointsGlobal(); |
m_nodeDistribution[m_mpiInfo->size]=getNumDataPointsGlobal(); |
|
|
|
1477 |
m_nodeId.resize(getNumNodes()); |
m_nodeId.resize(getNumNodes()); |
1478 |
|
m_dofId.resize(numDOF); |
1479 |
|
m_elementId.resize(getNumElements()); |
1480 |
|
|
1481 |
|
// populate face element counts |
1482 |
|
//left |
1483 |
|
if (m_offset[0]==0) |
1484 |
|
m_faceCount[0]=m_NE[1]; |
1485 |
|
else |
1486 |
|
m_faceCount[0]=0; |
1487 |
|
//right |
1488 |
|
if (m_mpiInfo->rank%m_NX[0]==m_NX[0]-1) |
1489 |
|
m_faceCount[1]=m_NE[1]; |
1490 |
|
else |
1491 |
|
m_faceCount[1]=0; |
1492 |
|
//bottom |
1493 |
|
if (m_offset[1]==0) |
1494 |
|
m_faceCount[2]=m_NE[0]; |
1495 |
|
else |
1496 |
|
m_faceCount[2]=0; |
1497 |
|
//top |
1498 |
|
if (m_mpiInfo->rank/m_NX[0]==m_NX[1]-1) |
1499 |
|
m_faceCount[3]=m_NE[0]; |
1500 |
|
else |
1501 |
|
m_faceCount[3]=0; |
1502 |
|
|
1503 |
|
m_faceId.resize(getNumFaceElements()); |
1504 |
|
|
1505 |
|
const index_t left = (m_offset[0]==0 ? 0 : 1); |
1506 |
|
const index_t bottom = (m_offset[1]==0 ? 0 : 1); |
1507 |
|
const dim_t nDOF0 = (m_gNE[0]+1)/m_NX[0]; |
1508 |
|
const dim_t nDOF1 = (m_gNE[1]+1)/m_NX[1]; |
1509 |
|
|
1510 |
|
#define globalNodeId(x,y) \ |
1511 |
|
((m_offset[0]+x)/nDOF0)*nDOF0*nDOF1+(m_offset[0]+x)%nDOF0 \ |
1512 |
|
+ ((m_offset[1]+y)/nDOF1)*nDOF0*nDOF1*m_NX[0]+((m_offset[1]+y)%nDOF1)*nDOF0 |
1513 |
|
|
1514 |
|
// set corner id's outside the parallel region |
1515 |
|
m_nodeId[0] = globalNodeId(0, 0); |
1516 |
|
m_nodeId[m_NN[0]-1] = globalNodeId(m_NN[0]-1, 0); |
1517 |
|
m_nodeId[m_NN[0]*(m_NN[1]-1)] = globalNodeId(0, m_NN[1]-1); |
1518 |
|
m_nodeId[m_NN[0]*m_NN[1]-1] = globalNodeId(m_NN[0]-1,m_NN[1]-1); |
1519 |
|
#undef globalNodeId |
1520 |
|
|
1521 |
|
#pragma omp parallel |
1522 |
|
{ |
1523 |
|
// populate degrees of freedom and own nodes (identical id) |
1524 |
|
#pragma omp for nowait |
1525 |
|
for (dim_t i=0; i<nDOF1; i++) { |
1526 |
|
for (dim_t j=0; j<nDOF0; j++) { |
1527 |
|
const index_t nodeIdx=j+left+(i+bottom)*m_NN[0]; |
1528 |
|
const index_t dofIdx=j+i*nDOF0; |
1529 |
|
m_dofId[dofIdx] = m_nodeId[nodeIdx] |
1530 |
|
= m_nodeDistribution[m_mpiInfo->rank]+dofIdx; |
1531 |
|
} |
1532 |
|
} |
1533 |
|
|
1534 |
|
// populate the rest of the nodes (shared with other ranks) |
1535 |
|
if (m_faceCount[0]==0) { // left column |
1536 |
|
#pragma omp for nowait |
1537 |
|
for (dim_t i=0; i<nDOF1; i++) { |
1538 |
|
const index_t nodeIdx=(i+bottom)*m_NN[0]; |
1539 |
|
const index_t dofId=(i+1)*nDOF0-1; |
1540 |
|
m_nodeId[nodeIdx] |
1541 |
|
= m_nodeDistribution[m_mpiInfo->rank-1]+dofId; |
1542 |
|
} |
1543 |
|
} |
1544 |
|
if (m_faceCount[1]==0) { // right column |
1545 |
|
#pragma omp for nowait |
1546 |
|
for (dim_t i=0; i<nDOF1; i++) { |
1547 |
|
const index_t nodeIdx=(i+bottom+1)*m_NN[0]-1; |
1548 |
|
const index_t dofId=i*nDOF0; |
1549 |
|
m_nodeId[nodeIdx] |
1550 |
|
= m_nodeDistribution[m_mpiInfo->rank+1]+dofId; |
1551 |
|
} |
1552 |
|
} |
1553 |
|
if (m_faceCount[2]==0) { // bottom row |
1554 |
|
#pragma omp for nowait |
1555 |
|
for (dim_t i=0; i<nDOF0; i++) { |
1556 |
|
const index_t nodeIdx=i+left; |
1557 |
|
const index_t dofId=nDOF0*(nDOF1-1)+i; |
1558 |
|
m_nodeId[nodeIdx] |
1559 |
|
= m_nodeDistribution[m_mpiInfo->rank-m_NX[0]]+dofId; |
1560 |
|
} |
1561 |
|
} |
1562 |
|
if (m_faceCount[3]==0) { // top row |
1563 |
|
#pragma omp for nowait |
1564 |
|
for (dim_t i=0; i<nDOF0; i++) { |
1565 |
|
const index_t nodeIdx=m_NN[0]*(m_NN[1]-1)+i+left; |
1566 |
|
const index_t dofId=i; |
1567 |
|
m_nodeId[nodeIdx] |
1568 |
|
= m_nodeDistribution[m_mpiInfo->rank+m_NX[0]]+dofId; |
1569 |
|
} |
1570 |
|
} |
1571 |
|
|
1572 |
|
// populate element id's |
1573 |
|
#pragma omp for nowait |
1574 |
|
for (dim_t i1=0; i1<m_NE[1]; i1++) { |
1575 |
|
for (dim_t i0=0; i0<m_NE[0]; i0++) { |
1576 |
|
m_elementId[i0+i1*m_NE[0]]=(m_offset[1]+i1)*m_gNE[0]+m_offset[0]+i0; |
1577 |
|
} |
1578 |
|
} |
1579 |
|
|
1580 |
// the bottom row and left column are not owned by this rank so the |
// face elements |
1581 |
// identifiers need to be computed accordingly |
#pragma omp for |
1582 |
const index_t left = (m_offset0==0 ? 0 : 1); |
for (dim_t k=0; k<getNumFaceElements(); k++) |
1583 |
const index_t bottom = (m_offset1==0 ? 0 : 1); |
m_faceId[k]=k; |
1584 |
if (left>0) { |
} // end parallel section |
1585 |
const int neighbour=m_mpiInfo->rank-1; |
|
1586 |
const index_t leftN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1); |
m_nodeTags.assign(getNumNodes(), 0); |
1587 |
|
updateTagsInUse(Nodes); |
1588 |
|
|
1589 |
|
m_elementTags.assign(getNumElements(), 0); |
1590 |
|
updateTagsInUse(Elements); |
1591 |
|
|
1592 |
|
// generate face offset vector and set face tags |
1593 |
|
const index_t LEFT=1, RIGHT=2, BOTTOM=10, TOP=20; |
1594 |
|
const index_t faceTag[] = { LEFT, RIGHT, BOTTOM, TOP }; |
1595 |
|
m_faceOffset.assign(4, -1); |
1596 |
|
m_faceTags.clear(); |
1597 |
|
index_t offset=0; |
1598 |
|
for (size_t i=0; i<4; i++) { |
1599 |
|
if (m_faceCount[i]>0) { |
1600 |
|
m_faceOffset[i]=offset; |
1601 |
|
offset+=m_faceCount[i]; |
1602 |
|
m_faceTags.insert(m_faceTags.end(), m_faceCount[i], faceTag[i]); |
1603 |
|
} |
1604 |
|
} |
1605 |
|
setTagMap("left", LEFT); |
1606 |
|
setTagMap("right", RIGHT); |
1607 |
|
setTagMap("bottom", BOTTOM); |
1608 |
|
setTagMap("top", TOP); |
1609 |
|
updateTagsInUse(FaceElements); |
1610 |
|
} |
1611 |
|
|
1612 |
|
//private |
1613 |
|
void Rectangle::createPattern() |
1614 |
|
{ |
1615 |
|
const dim_t nDOF0 = (m_gNE[0]+1)/m_NX[0]; |
1616 |
|
const dim_t nDOF1 = (m_gNE[1]+1)/m_NX[1]; |
1617 |
|
const index_t left = (m_offset[0]==0 ? 0 : 1); |
1618 |
|
const index_t bottom = (m_offset[1]==0 ? 0 : 1); |
1619 |
|
|
1620 |
|
// populate node->DOF mapping with own degrees of freedom. |
1621 |
|
// The rest is assigned in the loop further down |
1622 |
|
m_dofMap.assign(getNumNodes(), 0); |
1623 |
#pragma omp parallel for |
#pragma omp parallel for |
1624 |
for (dim_t i1=bottom; i1<m_N1; i1++) { |
for (index_t i=bottom; i<bottom+nDOF1; i++) { |
1625 |
m_nodeId[i1*m_N0]=m_nodeDistribution[neighbour] |
for (index_t j=left; j<left+nDOF0; j++) { |
1626 |
+ (i1-bottom+1)*leftN0-1; |
m_dofMap[i*m_NN[0]+j]=(i-bottom)*nDOF0+j-left; |
1627 |
} |
} |
1628 |
} |
} |
1629 |
if (bottom>0) { |
|
1630 |
const int neighbour=m_mpiInfo->rank-m_NX; |
// build list of shared components and neighbours by looping through |
1631 |
const index_t bottomN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1); |
// all potential neighbouring ranks and checking if positions are |
1632 |
const index_t bottomN1=(neighbour/m_NX == 0 ? m_N1 : m_N1-1); |
// within bounds |
1633 |
|
const dim_t numDOF=nDOF0*nDOF1; |
1634 |
|
vector<IndexVector> colIndices(numDOF); // for the couple blocks |
1635 |
|
RankVector neighbour; |
1636 |
|
IndexVector offsetInShared(1,0); |
1637 |
|
IndexVector sendShared, recvShared; |
1638 |
|
int numShared=0, expectedShared=0; |
1639 |
|
const int x=m_mpiInfo->rank%m_NX[0]; |
1640 |
|
const int y=m_mpiInfo->rank/m_NX[0]; |
1641 |
|
if (x > 0) |
1642 |
|
expectedShared += nDOF1; |
1643 |
|
if (x < m_NX[0] - 1) |
1644 |
|
expectedShared += nDOF1; |
1645 |
|
if (y > 0) |
1646 |
|
expectedShared += nDOF0; |
1647 |
|
if (y < m_NX[1] - 1) |
1648 |
|
expectedShared += nDOF0; |
1649 |
|
if (x > 0 && y > 0) expectedShared++; |
1650 |
|
if (x > 0 && y < m_NX[1] - 1) expectedShared++; |
1651 |
|
if (x < m_NX[0] - 1 && y > 0) expectedShared++; |
1652 |
|
if (x < m_NX[0] - 1 && y < m_NX[1] - 1) expectedShared++; |
1653 |
|
|
1654 |
|
vector<IndexVector> rowIndices(expectedShared); |
1655 |
|
|
1656 |
|
for (int i1=-1; i1<2; i1++) { |
1657 |
|
for (int i0=-1; i0<2; i0++) { |
1658 |
|
// skip this rank |
1659 |
|
if (i0==0 && i1==0) |
1660 |
|
continue; |
1661 |
|
// location of neighbour rank |
1662 |
|
const int nx=x+i0; |
1663 |
|
const int ny=y+i1; |
1664 |
|
if (nx>=0 && ny>=0 && nx<m_NX[0] && ny<m_NX[1]) { |
1665 |
|
neighbour.push_back(ny*m_NX[0]+nx); |
1666 |
|
if (i0==0) { |
1667 |
|
// sharing top or bottom edge |
1668 |
|
const int firstDOF=(i1==-1 ? 0 : numDOF-nDOF0); |
1669 |
|
const int firstNode=(i1==-1 ? left : m_NN[0]*(m_NN[1]-1)+left); |
1670 |
|
offsetInShared.push_back(offsetInShared.back()+nDOF0); |
1671 |
|
for (dim_t i=0; i<nDOF0; i++, numShared++) { |
1672 |
|
sendShared.push_back(firstDOF+i); |
1673 |
|
recvShared.push_back(numDOF+numShared); |
1674 |
|
if (i>0) |
1675 |
|
doublyLink(colIndices, rowIndices, firstDOF+i-1, numShared); |
1676 |
|
doublyLink(colIndices, rowIndices, firstDOF+i, numShared); |
1677 |
|
if (i<nDOF0-1) |
1678 |
|
doublyLink(colIndices, rowIndices, firstDOF+i+1, numShared); |
1679 |
|
m_dofMap[firstNode+i]=numDOF+numShared; |
1680 |
|
} |
1681 |
|
} else if (i1==0) { |
1682 |
|
// sharing left or right edge |
1683 |
|
const int firstDOF=(i0==-1 ? 0 : nDOF0-1); |
1684 |
|
const int firstNode=(i0==-1 ? bottom*m_NN[0] : (bottom+1)*m_NN[0]-1); |
1685 |
|
offsetInShared.push_back(offsetInShared.back()+nDOF1); |
1686 |
|
for (dim_t i=0; i<nDOF1; i++, numShared++) { |
1687 |
|
sendShared.push_back(firstDOF+i*nDOF0); |
1688 |
|
recvShared.push_back(numDOF+numShared); |
1689 |
|
if (i>0) |
1690 |
|
doublyLink(colIndices, rowIndices, firstDOF+(i-1)*nDOF0, numShared); |
1691 |
|
doublyLink(colIndices, rowIndices, firstDOF+i*nDOF0, numShared); |
1692 |
|
if (i<nDOF1-1) |
1693 |
|
doublyLink(colIndices, rowIndices, firstDOF+(i+1)*nDOF0, numShared); |
1694 |
|
m_dofMap[firstNode+i*m_NN[0]]=numDOF+numShared; |
1695 |
|
} |
1696 |
|
} else { |
1697 |
|
// sharing a node |
1698 |
|
const int dof=(i0+1)/2*(nDOF0-1)+(i1+1)/2*(numDOF-nDOF0); |
1699 |
|
const int node=(i0+1)/2*(m_NN[0]-1)+(i1+1)/2*m_NN[0]*(m_NN[1]-1); |
1700 |
|
offsetInShared.push_back(offsetInShared.back()+1); |
1701 |
|
sendShared.push_back(dof); |
1702 |
|
recvShared.push_back(numDOF+numShared); |
1703 |
|
doublyLink(colIndices, rowIndices, dof, numShared); |
1704 |
|
m_dofMap[node]=numDOF+numShared; |
1705 |
|
++numShared; |
1706 |
|
} |
1707 |
|
} |
1708 |
|
} |
1709 |
|
} |
1710 |
|
|
1711 |
#pragma omp parallel for |
#pragma omp parallel for |
1712 |
for (dim_t i0=left; i0<m_N0; i0++) { |
for (int i = 0; i < numShared; i++) { |
1713 |
m_nodeId[i0]=m_nodeDistribution[neighbour] |
std::sort(rowIndices[i].begin(), rowIndices[i].end()); |
1714 |
+ (bottomN1-1)*bottomN0 + i0 - left; |
} |
1715 |
|
|
1716 |
|
// create connector |
1717 |
|
Paso_SharedComponents *snd_shcomp = Paso_SharedComponents_alloc( |
1718 |
|
numDOF, neighbour.size(), &neighbour[0], &sendShared[0], |
1719 |
|
&offsetInShared[0], 1, 0, m_mpiInfo); |
1720 |
|
Paso_SharedComponents *rcv_shcomp = Paso_SharedComponents_alloc( |
1721 |
|
numDOF, neighbour.size(), &neighbour[0], &recvShared[0], |
1722 |
|
&offsetInShared[0], 1, 0, m_mpiInfo); |
1723 |
|
m_connector = Paso_Connector_alloc(snd_shcomp, rcv_shcomp); |
1724 |
|
Paso_SharedComponents_free(snd_shcomp); |
1725 |
|
Paso_SharedComponents_free(rcv_shcomp); |
1726 |
|
|
1727 |
|
// create main and couple blocks |
1728 |
|
Paso_Pattern *mainPattern = createMainPattern(); |
1729 |
|
Paso_Pattern *colPattern, *rowPattern; |
1730 |
|
createCouplePatterns(colIndices, rowIndices, numShared, &colPattern, &rowPattern); |
1731 |
|
|
1732 |
|
// allocate paso distribution |
1733 |
|
Paso_Distribution* distribution = Paso_Distribution_alloc(m_mpiInfo, |
1734 |
|
const_cast<index_t*>(&m_nodeDistribution[0]), 1, 0); |
1735 |
|
|
1736 |
|
// finally create the system matrix |
1737 |
|
m_pattern = Paso_SystemMatrixPattern_alloc(MATRIX_FORMAT_DEFAULT, |
1738 |
|
distribution, distribution, mainPattern, colPattern, rowPattern, |
1739 |
|
m_connector, m_connector); |
1740 |
|
|
1741 |
|
Paso_Distribution_free(distribution); |
1742 |
|
|
1743 |
|
// useful debug output |
1744 |
|
/* |
1745 |
|
cout << "--- rcv_shcomp ---" << endl; |
1746 |
|
cout << "numDOF=" << numDOF << ", numNeighbors=" << neighbour.size() << endl; |
1747 |
|
for (size_t i=0; i<neighbour.size(); i++) { |
1748 |
|
cout << "neighbor[" << i << "]=" << neighbour[i] |
1749 |
|
<< " offsetInShared[" << i+1 << "]=" << offsetInShared[i+1] << endl; |
1750 |
|
} |
1751 |
|
for (size_t i=0; i<recvShared.size(); i++) { |
1752 |
|
cout << "shared[" << i << "]=" << recvShared[i] << endl; |
1753 |
|
} |
1754 |
|
cout << "--- snd_shcomp ---" << endl; |
1755 |
|
for (size_t i=0; i<sendShared.size(); i++) { |
1756 |
|
cout << "shared[" << i << "]=" << sendShared[i] << endl; |
1757 |
|
} |
1758 |
|
cout << "--- dofMap ---" << endl; |
1759 |
|
for (size_t i=0; i<m_dofMap.size(); i++) { |
1760 |
|
cout << "m_dofMap[" << i << "]=" << m_dofMap[i] << endl; |
1761 |
|
} |
1762 |
|
cout << "--- colIndices ---" << endl; |
1763 |
|
for (size_t i=0; i<colIndices.size(); i++) { |
1764 |
|
cout << "colIndices[" << i << "].size()=" << colIndices[i].size() << endl; |
1765 |
|
} |
1766 |
|
*/ |
1767 |
|
|
1768 |
|
/* |
1769 |
|
cout << "--- main_pattern ---" << endl; |
1770 |
|
cout << "M=" << mainPattern->numOutput << ", N=" << mainPattern->numInput << endl; |
1771 |
|
for (size_t i=0; i<mainPattern->numOutput+1; i++) { |
1772 |
|
cout << "ptr[" << i << "]=" << mainPattern->ptr[i] << endl; |
1773 |
|
} |
1774 |
|
for (size_t i=0; i<mainPattern->ptr[mainPattern->numOutput]; i++) { |
1775 |
|
cout << "index[" << i << "]=" << mainPattern->index[i] << endl; |
1776 |
|
} |
1777 |
|
*/ |
1778 |
|
|
1779 |
|
/* |
1780 |
|
cout << "--- colCouple_pattern ---" << endl; |
1781 |
|
cout << "M=" << colPattern->numOutput << ", N=" << colPattern->numInput << endl; |
1782 |
|
for (size_t i=0; i<colPattern->numOutput+1; i++) { |
1783 |
|
cout << "ptr[" << i << "]=" << colPattern->ptr[i] << endl; |
1784 |
|
} |
1785 |
|
for (size_t i=0; i<colPattern->ptr[colPattern->numOutput]; i++) { |
1786 |
|
cout << "index[" << i << "]=" << colPattern->index[i] << endl; |
1787 |
|
} |
1788 |
|
*/ |
1789 |
|
|
1790 |
|
/* |
1791 |
|
cout << "--- rowCouple_pattern ---" << endl; |
1792 |
|
cout << "M=" << rowPattern->numOutput << ", N=" << rowPattern->numInput << endl; |
1793 |
|
for (size_t i=0; i<rowPattern->numOutput+1; i++) { |
1794 |
|
cout << "ptr[" << i << "]=" << rowPattern->ptr[i] << endl; |
1795 |
|
} |
1796 |
|
for (size_t i=0; i<rowPattern->ptr[rowPattern->numOutput]; i++) { |
1797 |
|
cout << "index[" << i << "]=" << rowPattern->index[i] << endl; |
1798 |
|
} |
1799 |
|
*/ |
1800 |
|
|
1801 |
|
Paso_Pattern_free(mainPattern); |
1802 |
|
Paso_Pattern_free(colPattern); |
1803 |
|
Paso_Pattern_free(rowPattern); |
1804 |
|
} |
1805 |
|
|
1806 |
|
//private |
1807 |
|
void Rectangle::addToMatrixAndRHS(Paso_SystemMatrix* S, escript::Data& F, |
1808 |
|
const vector<double>& EM_S, const vector<double>& EM_F, bool addS, |
1809 |
|
bool addF, index_t firstNode, dim_t nEq, dim_t nComp) const |
1810 |
|
{ |
1811 |
|
IndexVector rowIndex; |
1812 |
|
rowIndex.push_back(m_dofMap[firstNode]); |
1813 |
|
rowIndex.push_back(m_dofMap[firstNode+1]); |
1814 |
|
rowIndex.push_back(m_dofMap[firstNode+m_NN[0]]); |
1815 |
|
rowIndex.push_back(m_dofMap[firstNode+m_NN[0]+1]); |
1816 |
|
if (addF) { |
1817 |
|
double *F_p=F.getSampleDataRW(0); |
1818 |
|
for (index_t i=0; i<rowIndex.size(); i++) { |
1819 |
|
if (rowIndex[i]<getNumDOF()) { |
1820 |
|
for (index_t eq=0; eq<nEq; eq++) { |
1821 |
|
F_p[INDEX2(eq, rowIndex[i], nEq)]+=EM_F[INDEX2(eq,i,nEq)]; |
1822 |
|
} |
1823 |
|
} |
1824 |
} |
} |
1825 |
} |
} |
1826 |
if (left>0 && bottom>0) { |
if (addS) { |
1827 |
const int neighbour=m_mpiInfo->rank-m_NX-1; |
addToSystemMatrix(S, rowIndex, nEq, rowIndex, nComp, EM_S); |
|
const index_t bottomN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1); |
|
|
const index_t bottomN1=(neighbour/m_NX == 0 ? m_N1 : m_N1-1); |
|
|
m_nodeId[0]=m_nodeDistribution[neighbour]+bottomN1*bottomN0-1; |
|
1828 |
} |
} |
1829 |
|
} |
1830 |
|
|
1831 |
// the rest of the id's are contiguous |
//protected |
1832 |
const index_t firstId=m_nodeDistribution[m_mpiInfo->rank]; |
void Rectangle::interpolateNodesOnElements(escript::Data& out, |
1833 |
#pragma omp parallel for |
const escript::Data& in, |
1834 |
for (dim_t i1=bottom; i1<m_N1; i1++) { |
bool reduced) const |
1835 |
for (dim_t i0=left; i0<m_N0; i0++) { |
{ |
1836 |
m_nodeId[i0+i1*m_N0] = firstId+i0-left+(i1-bottom)*(m_N0-left); |
const dim_t numComp = in.getDataPointSize(); |
1837 |
|
if (reduced) { |
1838 |
|
out.requireWrite(); |
1839 |
|
const double c0 = 0.25; |
1840 |
|
#pragma omp parallel |
1841 |
|
{ |
1842 |
|
vector<double> f_00(numComp); |
1843 |
|
vector<double> f_01(numComp); |
1844 |
|
vector<double> f_10(numComp); |
1845 |
|
vector<double> f_11(numComp); |
1846 |
|
#pragma omp for |
1847 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1848 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1849 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,k1, m_NN[0])), numComp*sizeof(double)); |
1850 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,k1+1, m_NN[0])), numComp*sizeof(double)); |
1851 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,k1, m_NN[0])), numComp*sizeof(double)); |
1852 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1853 |
|
double* o = out.getSampleDataRW(INDEX2(k0,k1,m_NE[0])); |
1854 |
|
for (index_t i=0; i < numComp; ++i) { |
1855 |
|
o[INDEX2(i,numComp,0)] = c0*(f_00[i] + f_01[i] + f_10[i] + f_11[i]); |
1856 |
|
} /* end of component loop i */ |
1857 |
|
} /* end of k0 loop */ |
1858 |
|
} /* end of k1 loop */ |
1859 |
|
} /* end of parallel section */ |
1860 |
|
} else { |
1861 |
|
out.requireWrite(); |
1862 |
|
const double c0 = 0.16666666666666666667; |
1863 |
|
const double c1 = 0.044658198738520451079; |
1864 |
|
const double c2 = 0.62200846792814621559; |
1865 |
|
#pragma omp parallel |
1866 |
|
{ |
1867 |
|
vector<double> f_00(numComp); |
1868 |
|
vector<double> f_01(numComp); |
1869 |
|
vector<double> f_10(numComp); |
1870 |
|
vector<double> f_11(numComp); |
1871 |
|
#pragma omp for |
1872 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1873 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1874 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,k1, m_NN[0])), numComp*sizeof(double)); |
1875 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,k1+1, m_NN[0])), numComp*sizeof(double)); |
1876 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,k1, m_NN[0])), numComp*sizeof(double)); |
1877 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1878 |
|
double* o = out.getSampleDataRW(INDEX2(k0,k1,m_NE[0])); |
1879 |
|
for (index_t i=0; i < numComp; ++i) { |
1880 |
|
o[INDEX2(i,numComp,0)] = c0*(f_01[i] + f_10[i]) + c1*f_11[i] + c2*f_00[i]; |
1881 |
|
o[INDEX2(i,numComp,1)] = c0*(f_00[i] + f_11[i]) + c1*f_01[i] + c2*f_10[i]; |
1882 |
|
o[INDEX2(i,numComp,2)] = c0*(f_00[i] + f_11[i]) + c1*f_10[i] + c2*f_01[i]; |
1883 |
|
o[INDEX2(i,numComp,3)] = c0*(f_01[i] + f_10[i]) + c1*f_00[i] + c2*f_11[i]; |
1884 |
|
} /* end of component loop i */ |
1885 |
|
} /* end of k0 loop */ |
1886 |
|
} /* end of k1 loop */ |
1887 |
|
} /* end of parallel section */ |
1888 |
|
} |
1889 |
|
} |
1890 |
|
|
1891 |
|
//protected |
1892 |
|
void Rectangle::interpolateNodesOnFaces(escript::Data& out, |
1893 |
|
const escript::Data& in, |
1894 |
|
bool reduced) const |
1895 |
|
{ |
1896 |
|
const dim_t numComp = in.getDataPointSize(); |
1897 |
|
if (reduced) { |
1898 |
|
out.requireWrite(); |
1899 |
|
#pragma omp parallel |
1900 |
|
{ |
1901 |
|
vector<double> f_00(numComp); |
1902 |
|
vector<double> f_01(numComp); |
1903 |
|
vector<double> f_10(numComp); |
1904 |
|
vector<double> f_11(numComp); |
1905 |
|
if (m_faceOffset[0] > -1) { |
1906 |
|
#pragma omp for nowait |
1907 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1908 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(0,k1, m_NN[0])), numComp*sizeof(double)); |
1909 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(0,k1+1, m_NN[0])), numComp*sizeof(double)); |
1910 |
|
double* o = out.getSampleDataRW(m_faceOffset[0]+k1); |
1911 |
|
for (index_t i=0; i < numComp; ++i) { |
1912 |
|
o[INDEX2(i,numComp,0)] = (f_00[i] + f_01[i])/2; |
1913 |
|
} /* end of component loop i */ |
1914 |
|
} /* end of k1 loop */ |
1915 |
|
} /* end of face 0 */ |
1916 |
|
if (m_faceOffset[1] > -1) { |
1917 |
|
#pragma omp for nowait |
1918 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1919 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(m_NN[0]-1,k1, m_NN[0])), numComp*sizeof(double)); |
1920 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(m_NN[0]-1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1921 |
|
double* o = out.getSampleDataRW(m_faceOffset[1]+k1); |
1922 |
|
for (index_t i=0; i < numComp; ++i) { |
1923 |
|
o[INDEX2(i,numComp,0)] = (f_10[i] + f_11[i])/2; |
1924 |
|
} /* end of component loop i */ |
1925 |
|
} /* end of k1 loop */ |
1926 |
|
} /* end of face 1 */ |
1927 |
|
if (m_faceOffset[2] > -1) { |
1928 |
|
#pragma omp for nowait |
1929 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1930 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,0, m_NN[0])), numComp*sizeof(double)); |
1931 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,0, m_NN[0])), numComp*sizeof(double)); |
1932 |
|
double* o = out.getSampleDataRW(m_faceOffset[2]+k0); |
1933 |
|
for (index_t i=0; i < numComp; ++i) { |
1934 |
|
o[INDEX2(i,numComp,0)] = (f_00[i] + f_10[i])/2; |
1935 |
|
} /* end of component loop i */ |
1936 |
|
} /* end of k0 loop */ |
1937 |
|
} /* end of face 2 */ |
1938 |
|
if (m_faceOffset[3] > -1) { |
1939 |
|
#pragma omp for nowait |
1940 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1941 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,m_NN[1]-1, m_NN[0])), numComp*sizeof(double)); |
1942 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,m_NN[1]-1, m_NN[0])), numComp*sizeof(double)); |
1943 |
|
double* o = out.getSampleDataRW(m_faceOffset[3]+k0); |
1944 |
|
for (index_t i=0; i < numComp; ++i) { |
1945 |
|
o[INDEX2(i,numComp,0)] = (f_01[i] + f_11[i])/2; |
1946 |
|
} /* end of component loop i */ |
1947 |
|
} /* end of k0 loop */ |
1948 |
|
} /* end of face 3 */ |
1949 |
|
} /* end of parallel section */ |
1950 |
|
} else { |
1951 |
|
out.requireWrite(); |
1952 |
|
const double c0 = 0.21132486540518711775; |
1953 |
|
const double c1 = 0.78867513459481288225; |
1954 |
|
#pragma omp parallel |
1955 |
|
{ |
1956 |
|
vector<double> f_00(numComp); |
1957 |
|
vector<double> f_01(numComp); |
1958 |
|
vector<double> f_10(numComp); |
1959 |
|
vector<double> f_11(numComp); |
1960 |
|
if (m_faceOffset[0] > -1) { |
1961 |
|
#pragma omp for nowait |
1962 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1963 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(0,k1, m_NN[0])), numComp*sizeof(double)); |
1964 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(0,k1+1, m_NN[0])), numComp*sizeof(double)); |
1965 |
|
double* o = out.getSampleDataRW(m_faceOffset[0]+k1); |
1966 |
|
for (index_t i=0; i < numComp; ++i) { |
1967 |
|
o[INDEX2(i,numComp,0)] = c0*f_01[i] + c1*f_00[i]; |
1968 |
|
o[INDEX2(i,numComp,1)] = c0*f_00[i] + c1*f_01[i]; |
1969 |
|
} /* end of component loop i */ |
1970 |
|
} /* end of k1 loop */ |
1971 |
|
} /* end of face 0 */ |
1972 |
|
if (m_faceOffset[1] > -1) { |
1973 |
|
#pragma omp for nowait |
1974 |
|
for (index_t k1=0; k1 < m_NE[1]; ++k1) { |
1975 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(m_NN[0]-1,k1, m_NN[0])), numComp*sizeof(double)); |
1976 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(m_NN[0]-1,k1+1, m_NN[0])), numComp*sizeof(double)); |
1977 |
|
double* o = out.getSampleDataRW(m_faceOffset[1]+k1); |
1978 |
|
for (index_t i=0; i < numComp; ++i) { |
1979 |
|
o[INDEX2(i,numComp,0)] = c1*f_10[i] + c0*f_11[i]; |
1980 |
|
o[INDEX2(i,numComp,1)] = c1*f_11[i] + c0*f_10[i]; |
1981 |
|
} /* end of component loop i */ |
1982 |
|
} /* end of k1 loop */ |
1983 |
|
} /* end of face 1 */ |
1984 |
|
if (m_faceOffset[2] > -1) { |
1985 |
|
#pragma omp for nowait |
1986 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1987 |
|
memcpy(&f_00[0], in.getSampleDataRO(INDEX2(k0,0, m_NN[0])), numComp*sizeof(double)); |
1988 |
|
memcpy(&f_10[0], in.getSampleDataRO(INDEX2(k0+1,0, m_NN[0])), numComp*sizeof(double)); |
1989 |
|
double* o = out.getSampleDataRW(m_faceOffset[2]+k0); |
1990 |
|
for (index_t i=0; i < numComp; ++i) { |
1991 |
|
o[INDEX2(i,numComp,0)] = c0*f_10[i] + c1*f_00[i]; |
1992 |
|
o[INDEX2(i,numComp,1)] = c0*f_00[i] + c1*f_10[i]; |
1993 |
|
} /* end of component loop i */ |
1994 |
|
} /* end of k0 loop */ |
1995 |
|
} /* end of face 2 */ |
1996 |
|
if (m_faceOffset[3] > -1) { |
1997 |
|
#pragma omp for nowait |
1998 |
|
for (index_t k0=0; k0 < m_NE[0]; ++k0) { |
1999 |
|
memcpy(&f_01[0], in.getSampleDataRO(INDEX2(k0,m_NN[1]-1, m_NN[0])), numComp*sizeof(double)); |
2000 |
|
memcpy(&f_11[0], in.getSampleDataRO(INDEX2(k0+1,m_NN[1]-1, m_NN[0])), numComp*sizeof(double)); |
2001 |
|
double* o = out.getSampleDataRW(m_faceOffset[3]+k0); |
2002 |
|
for (index_t i=0; i < numComp; ++i) { |
2003 |
|
o[INDEX2(i,numComp,0)] = c0*f_11[i] + c1*f_01[i]; |
2004 |
|
o[INDEX2(i,numComp,1)] = c0*f_01[i] + c1*f_11[i]; |
2005 |
|
} /* end of component loop i */ |
2006 |
|
} /* end of k0 loop */ |
2007 |
|
} /* end of face 3 */ |
2008 |
|
} /* end of parallel section */ |
2009 |
|
} |
2010 |
|
} |
2011 |
|
|
2012 |
|
|
2013 |
|
|
2014 |
|
namespace |
2015 |
|
{ |
2016 |
|
// Calculates a guassian blur colvolution matrix for 2D |
2017 |
|
// See wiki article on the subject |
2018 |
|
double* get2DGauss(unsigned radius, double sigma) |
2019 |
|
{ |
2020 |
|
double* arr=new double[(radius*2+1)*(radius*2+1)]; |
2021 |
|
double common=M_1_PI*0.5*1/(sigma*sigma); |
2022 |
|
double total=0; |
2023 |
|
int r=static_cast<int>(radius); |
2024 |
|
for (int y=-r;y<=r;++y) |
2025 |
|
{ |
2026 |
|
for (int x=-r;x<=r;++x) |
2027 |
|
{ |
2028 |
|
arr[(x+r)+(y+r)*(r*2+1)]=common*exp(-(x*x+y*y)/(2*sigma*sigma)); |
2029 |
|
total+=arr[(x+r)+(y+r)*(r*2+1)]; |
2030 |
|
} |
2031 |
|
} |
2032 |
|
double invtotal=1/total; |
2033 |
|
for (size_t p=0;p<(radius*2+1)*(radius*2+1);++p) |
2034 |
|
{ |
2035 |
|
arr[p]*=invtotal; |
2036 |
} |
} |
2037 |
|
return arr; |
2038 |
} |
} |
2039 |
|
|
2040 |
|
// applies conv to source to get a point. |
2041 |
|
// (xp, yp) are the coords in the source matrix not the destination matrix |
2042 |
|
double Convolve2D(double* conv, double* source, size_t xp, size_t yp, unsigned radius, size_t width) |
2043 |
|
{ |
2044 |
|
size_t bx=xp-radius, by=yp-radius; |
2045 |
|
size_t sbase=bx+by*width; |
2046 |
|
double result=0; |
2047 |
|
for (int y=0;y<2*radius+1;++y) |
2048 |
|
{ |
2049 |
|
for (int x=0;x<2*radius+1;++x) |
2050 |
|
{ |
2051 |
|
result+=conv[x+y*(2*radius+1)] * source[sbase + x+y*width]; |
2052 |
|
} |
2053 |
|
} |
2054 |
|
return result; |
2055 |
|
} |
2056 |
|
} |
2057 |
|
|
2058 |
// elements |
|
2059 |
m_elementId.resize(getNumElements()); |
/* This is a wrapper for filtered (and non-filtered) randoms |
2060 |
#pragma omp parallel for |
* For detailed doco see randomFillWorker |
2061 |
for (dim_t k=0; k<getNumElements(); k++) { |
*/ |
2062 |
m_elementId[k]=k; |
escript::Data Rectangle::randomFill(const escript::DataTypes::ShapeType& shape, |
2063 |
|
const escript::FunctionSpace& what, |
2064 |
|
long seed, const boost::python::tuple& filter) const |
2065 |
|
{ |
2066 |
|
int numvals=escript::DataTypes::noValues(shape); |
2067 |
|
if (len(filter)>0 && (numvals!=1)) |
2068 |
|
{ |
2069 |
|
throw RipleyException("Ripley only supports filters for scalar data."); |
2070 |
|
} |
2071 |
|
escript::Data res=randomFillWorker(shape, seed, filter); |
2072 |
|
if (res.getFunctionSpace()!=what) |
2073 |
|
{ |
2074 |
|
escript::Data r=escript::Data(res, what); |
2075 |
|
return r; |
2076 |
} |
} |
2077 |
|
return res; |
2078 |
|
} |
2079 |
|
|
2080 |
// face elements |
|
2081 |
m_faceId.resize(getNumFaceElements()); |
/* This routine produces a Data object filled with smoothed random data. |
2082 |
#pragma omp parallel for |
The dimensions of the rectangle being filled are internal[0] x internal[1] points. |
2083 |
for (dim_t k=0; k<getNumFaceElements(); k++) { |
A parameter radius gives the size of the stencil used for the smoothing. |
2084 |
m_faceId[k]=k; |
A point on the left hand edge for example, will still require `radius` extra points to the left |
2085 |
|
in order to complete the stencil. |
2086 |
|
|
2087 |
|
All local calculation is done on an array called `src`, with |
2088 |
|
dimensions = ext[0] * ext[1]. |
2089 |
|
Where ext[i]= internal[i]+2*radius. |
2090 |
|
|
2091 |
|
Now for MPI there is overlap to deal with. We need to share both the overlapping |
2092 |
|
values themselves but also the external region. |
2093 |
|
|
2094 |
|
In a hypothetical 1-D case: |
2095 |
|
|
2096 |
|
|
2097 |
|
1234567 |
2098 |
|
would be split into two ranks thus: |
2099 |
|
123(4) (4)567 [4 being a shared element] |
2100 |
|
|
2101 |
|
If the radius is 2. There will be padding elements on the outside: |
2102 |
|
|
2103 |
|
pp123(4) (4)567pp |
2104 |
|
|
2105 |
|
To ensure that 4 can be correctly computed on both ranks, values from the other rank |
2106 |
|
need to be known. |
2107 |
|
|
2108 |
|
pp123(4)56 23(4)567pp |
2109 |
|
|
2110 |
|
Now in our case, we wout set all the values 23456 on the left rank and send them to the |
2111 |
|
right hand rank. |
2112 |
|
|
2113 |
|
So the edges _may_ need to be shared at a distance `inset` from all boundaries. |
2114 |
|
inset=2*radius+1 |
2115 |
|
This is to ensure that values at distance `radius` from the shared/overlapped element |
2116 |
|
that ripley has. |
2117 |
|
|
2118 |
|
|
2119 |
|
*/ |
2120 |
|
escript::Data Rectangle::randomFillWorker(const escript::DataTypes::ShapeType& shape, |
2121 |
|
long seed, const boost::python::tuple& filter) const |
2122 |
|
{ |
2123 |
|
if (m_numDim!=2) |
2124 |
|
{ |
2125 |
|
throw RipleyException("Only 2D supported at this time."); |
2126 |
|
} |
2127 |
|
|
2128 |
|
unsigned int radius=0; // these are only used by gaussian |
2129 |
|
double sigma=0.5; |
2130 |
|
|
2131 |
|
unsigned int numvals=escript::DataTypes::noValues(shape); |
2132 |
|
|
2133 |
|
|
2134 |
|
if (len(filter)==0) |
2135 |
|
{ |
2136 |
|
// nothing special required here yet |
2137 |
|
} |
2138 |
|
else if (len(filter)==3) |
2139 |
|
{ |
2140 |
|
boost::python::extract<string> ex(filter[0]); |
2141 |
|
if (!ex.check() || (ex()!="gaussian")) |
2142 |
|
{ |
2143 |
|
throw RipleyException("Unsupported random filter"); |
2144 |
|
} |
2145 |
|
boost::python::extract<unsigned int> ex1(filter[1]); |
2146 |
|
if (!ex1.check()) |
2147 |
|
{ |
2148 |
|
throw RipleyException("Radius of gaussian filter must be a positive integer."); |
2149 |
|
} |
2150 |
|
radius=ex1(); |
2151 |
|
sigma=0.5; |
2152 |
|
boost::python::extract<double> ex2(filter[2]); |
2153 |
|
if (!ex2.check() || (sigma=ex2())<=0) |
2154 |
|
{ |
2155 |
|
throw RipleyException("Sigma must be a postive floating point number."); |
2156 |
|
} |
2157 |
|
} |
2158 |
|
else |
2159 |
|
{ |
2160 |
|
throw RipleyException("Unsupported random filter for Rectangle."); |
2161 |
|
} |
2162 |
|
|
2163 |
|
|
2164 |
|
|
2165 |
|
size_t internal[2]; |
2166 |
|
internal[0]=m_NE[0]+1; // number of points in the internal region |
2167 |
|
internal[1]=m_NE[1]+1; // that is, the ones we need smoothed versions of |
2168 |
|
size_t ext[2]; |
2169 |
|
ext[0]=internal[0]+2*radius; // includes points we need as input |
2170 |
|
ext[1]=internal[1]+2*radius; // for smoothing |
2171 |
|
|
2172 |
|
// now we check to see if the radius is acceptable |
2173 |
|
// That is, would not cross multiple ranks in MPI |
2174 |
|
|
2175 |
|
if (2*radius>=internal[0]-4) |
2176 |
|
{ |
2177 |
|
throw RipleyException("Radius of gaussian filter is too large for X dimension of a rank"); |
2178 |
|
} |
2179 |
|
if (2*radius>=internal[1]-4) |
2180 |
|
{ |
2181 |
|
throw RipleyException("Radius of gaussian filter is too large for Y dimension of a rank"); |
2182 |
|
} |
2183 |
|
|
2184 |
|
double* src=new double[ext[0]*ext[1]*numvals]; |
2185 |
|
esysUtils::randomFillArray(seed, src, ext[0]*ext[1]*numvals); |
2186 |
|
|
2187 |
|
|
2188 |
|
|
2189 |
|
#ifdef ESYS_MPI |
2190 |
|
if ((internal[0]<5) || (internal[1]<5)) |
2191 |
|
{ |
2192 |
|
// since the dimensions are equal for all ranks, this exception |
2193 |
|
// will be thrown on all ranks |
2194 |
|
throw RipleyException("Random Data in Ripley requries at least five elements per side per rank."); |
2195 |
|
} |
2196 |
|
dim_t X=m_mpiInfo->rank%m_NX[0]; |
2197 |
|
dim_t Y=m_mpiInfo->rank%(m_NX[0]*m_NX[1])/m_NX[0]; |
2198 |
|
#endif |
2199 |
|
|
2200 |
|
/* |
2201 |
|
// if we wanted to test a repeating pattern |
2202 |
|
size_t basex=0; |
2203 |
|
size_t basey=0; |
2204 |
|
#ifdef ESYS_MPI |
2205 |
|
basex=X*m_gNE[0]/m_NX[0]; |
2206 |
|
basey=Y*m_gNE[1]/m_NX[1]; |
2207 |
|
#endif |
2208 |
|
|
2209 |
|
esysUtils::patternFillArray2D(ext[0], ext[1], src, 4, basex, basey, numvals); |
2210 |
|
*/ |
2211 |
|
|
2212 |
|
|
2213 |
|
#ifdef ESYS_MPI |
2214 |
|
|
2215 |
|
BlockGrid2 grid(m_NX[0]-1, m_NX[1]-1); |
2216 |
|
size_t inset=2*radius+2; // Its +2 not +1 because a whole element is shared (and hence |
2217 |
|
// there is an overlap of two points both of which need to have "radius" points on either side. |
2218 |
|
|
2219 |
|
size_t xmidlen=ext[0]-2*inset; // how wide is the x-dimension between the two insets |
2220 |
|
size_t ymidlen=ext[1]-2*inset; |
2221 |
|
|
2222 |
|
Block2 block(ext[0], ext[1], inset, xmidlen, ymidlen, numvals); |
2223 |
|
|
2224 |
|
MPI_Request reqs[40]; // a non-tight upper bound on how many we need |
2225 |
|
MPI_Status stats[40]; |
2226 |
|
short rused=0; |
2227 |
|
|
2228 |
|
messvec incoms; |
2229 |
|
messvec outcoms; |
2230 |
|
|
2231 |
|
grid.generateInNeighbours(X, Y, incoms); |
2232 |
|
grid.generateOutNeighbours(X, Y, outcoms); |
2233 |
|
|
2234 |
|
block.copyAllToBuffer(src); |
2235 |
|
|
2236 |
|
int comserr=0; |
2237 |
|
for (size_t i=0;i<incoms.size();++i) |
2238 |
|
{ |
2239 |
|
message& m=incoms[i]; |
2240 |
|
comserr|=MPI_Irecv(block.getInBuffer(m.destbuffid), block.getBuffSize(m.destbuffid) , MPI_DOUBLE, m.sourceID, m.tag, m_mpiInfo->comm, reqs+(rused++)); |
2241 |
|
block.setUsed(m.destbuffid); |
2242 |
|
} |
2243 |
|
|
2244 |
|
for (size_t i=0;i<outcoms.size();++i) |
2245 |
|
{ |
2246 |
|
message& m=outcoms[i]; |
2247 |
|
comserr|=MPI_Isend(block.getOutBuffer(m.srcbuffid), block.getBuffSize(m.srcbuffid) , MPI_DOUBLE, m.destID, m.tag, m_mpiInfo->comm, reqs+(rused++)); |
2248 |
|
} |
2249 |
|
|
2250 |
|
if (!comserr) |
2251 |
|
{ |
2252 |
|
comserr=MPI_Waitall(rused, reqs, stats); |
2253 |
|
} |
2254 |
|
|
2255 |
|
if (comserr) |
2256 |
|
{ |
2257 |
|
// Yes this is throwing an exception as a result of an MPI error. |
2258 |
|
// and no we don't inform the other ranks that we are doing this. |
2259 |
|
// however, we have no reason to believe coms work at this point anyway |
2260 |
|
throw RipleyException("Error in coms for randomFill"); |
2261 |
|
} |
2262 |
|
|
2263 |
|
block.copyUsedFromBuffer(src); |
2264 |
|
|
2265 |
|
#endif |
2266 |
|
|
2267 |
|
if (radius==0 || numvals>1) // the truth of either should imply the truth of the other but let's be safe |
2268 |
|
{ |
2269 |
|
|
2270 |
|
escript::FunctionSpace fs(getPtr(), getContinuousFunctionCode()); |
2271 |
|
escript::Data resdat(0, shape, fs , true); |
2272 |
|
// don't need to check for exwrite because we just made it |
2273 |
|
escript::DataVector& dv=resdat.getExpandedVectorReference(); |
2274 |
|
|
2275 |
|
|
2276 |
|
// now we need to copy values over |
2277 |
|
for (size_t y=0;y<(internal[1]);++y) |
2278 |
|
{ |
2279 |
|
for (size_t x=0;x<(internal[0]);++x) |
2280 |
|
{ |
2281 |
|
for (unsigned int i=0;i<numvals;++i) |
2282 |
|
{ |
2283 |
|
dv[i+(x+y*(internal[0]))*numvals]=src[i+(x+y*ext[0])*numvals]; |
2284 |
|
} |
2285 |
|
} |
2286 |
|
} |
2287 |
|
delete[] src; |
2288 |
|
return resdat; |
2289 |
|
} |
2290 |
|
else // filter enabled |
2291 |
|
{ |
2292 |
|
escript::FunctionSpace fs(getPtr(), getContinuousFunctionCode()); |
2293 |
|
escript::Data resdat(0, escript::DataTypes::scalarShape, fs , true); |
2294 |
|
// don't need to check for exwrite because we just made it |
2295 |
|
escript::DataVector& dv=resdat.getExpandedVectorReference(); |
2296 |
|
double* convolution=get2DGauss(radius, sigma); |
2297 |
|
for (size_t y=0;y<(internal[1]);++y) |
2298 |
|
{ |
2299 |
|
for (size_t x=0;x<(internal[0]);++x) |
2300 |
|
{ |
2301 |
|
dv[x+y*(internal[0])]=Convolve2D(convolution, src, x+radius, y+radius, radius, ext[0]); |
2302 |
|
|
2303 |
|
} |
2304 |
|
} |
2305 |
|
delete[] convolution; |
2306 |
|
delete[] src; |
2307 |
|
return resdat; |
2308 |
|
} |
2309 |
|
} |
2310 |
|
|
2311 |
|
int Rectangle::findNode(const double *coords) const { |
2312 |
|
const int NOT_MINE = -1; |
2313 |
|
//is the found element even owned by this rank |
2314 |
|
// (inside owned or shared elements but will map to an owned element) |
2315 |
|
for (int dim = 0; dim < m_numDim; dim++) { |
2316 |
|
double min = m_origin[dim] + m_offset[dim]* m_dx[dim] |
2317 |
|
- m_dx[dim]/2.; //allows for point outside mapping onto node |
2318 |
|
double max = m_origin[dim] + (m_offset[dim] + m_NE[dim])*m_dx[dim] |
2319 |
|
+ m_dx[dim]/2.; |
2320 |
|
if (min > coords[dim] || max < coords[dim]) { |
2321 |
|
return NOT_MINE; |
2322 |
|
} |
2323 |
|
} |
2324 |
|
// get distance from origin |
2325 |
|
double x = coords[0] - m_origin[0]; |
2326 |
|
double y = coords[1] - m_origin[1]; |
2327 |
|
// distance in elements |
2328 |
|
int ex = (int) floor(x / m_dx[0]); |
2329 |
|
int ey = (int) floor(y / m_dx[1]); |
2330 |
|
// set the min distance high enough to be outside the element plus a bit |
2331 |
|
int closest = NOT_MINE; |
2332 |
|
double minDist = 1; |
2333 |
|
for (int dim = 0; dim < m_numDim; dim++) { |
2334 |
|
minDist += m_dx[dim]*m_dx[dim]; |
2335 |
|
} |
2336 |
|
//find the closest node |
2337 |
|
for (int dx = 0; dx < 1; dx++) { |
2338 |
|
double xdist = (x - (ex + dx)*m_dx[0]); |
2339 |
|
for (int dy = 0; dy < 1; dy++) { |
2340 |
|
double ydist = (y - (ey + dy)*m_dx[1]); |
2341 |
|
double total = xdist*xdist + ydist*ydist; |
2342 |
|
if (total < minDist) { |
2343 |
|
closest = INDEX2(ex+dx-m_offset[0], ey+dy-m_offset[1], m_NE[0] + 1); |
2344 |
|
minDist = total; |
2345 |
|
} |
2346 |
|
} |
2347 |
|
} |
2348 |
|
//if this happens, we've let a dirac point slip through, which is awful |
2349 |
|
if (closest == NOT_MINE) { |
2350 |
|
throw RipleyException("Unable to map appropriate dirac point to a node," |
2351 |
|
" implementation problem in Rectangle::findNode()"); |
2352 |
|
} |
2353 |
|
return closest; |
2354 |
|
} |
2355 |
|
|
2356 |
|
void Rectangle::setAssembler(std::string type, std::map<std::string, |
2357 |
|
escript::Data> constants) { |
2358 |
|
if (type.compare("WaveAssembler") == 0) { |
2359 |
|
if (assembler_type != WAVE_ASSEMBLER && assembler_type != DEFAULT_ASSEMBLER) |
2360 |
|
throw RipleyException("Domain already using a different custom assembler"); |
2361 |
|
assembler_type = WAVE_ASSEMBLER; |
2362 |
|
delete assembler; |
2363 |
|
assembler = new WaveAssembler2D(this, m_dx, m_NX, m_NE, m_NN, constants); |
2364 |
|
} else if (type.compare("LameAssembler") == 0) { |
2365 |
|
if (assembler_type != LAME_ASSEMBLER && assembler_type != DEFAULT_ASSEMBLER) |
2366 |
|
throw RipleyException("Domain already using a different custom assembler"); |
2367 |
|
assembler_type = LAME_ASSEMBLER; |
2368 |
|
delete assembler; |
2369 |
|
assembler = new LameAssembler2D(this, m_dx, m_NX, m_NE, m_NN); |
2370 |
|
} else { //else ifs would go before this for other types |
2371 |
|
throw RipleyException("Ripley::Rectangle does not support the" |
2372 |
|
" requested assembler"); |
2373 |
} |
} |
2374 |
} |
} |
2375 |
|
|